Курсовая работа: Система для визначення складу вихлопних газів автомобілів
MCU – мікроконтролер;
РС – персональний комп’ютер.
RS485 – прилад який призначений для перетворення інтерфейсу з USART в RS485;
Принцип роботи наведеної схеми полягає в тому що вимірювана велечина вимірюється і перетворюється в аналоговий сигнал за допомогою спеціального датчика вихідний сигнал датчика поступає на мультиплексор.
Далі з мультиплексора інформація потрапляє на АЦП, де перетворюється з аналогового сигналу в цифровий код. Інформацію з АЦП отримує мікроконтролер і за допомогою інтерфейсу обміну даних передається на ПК.
Першою перевагою даної реалізації системи це є її проста конструкція яка дозволяє не затрачувати багато конструкторських зусиль, але недоліком є те що потрібно більш складне програмне забезпечення для мікроконтролера яке складне і вимагає більшої праці і затраченого часу програмістів. Так як дана схема має малу кількість комплектуючих деталей вона є більш завадостійкою ніж будь-яка з розглянутих схем і тому має вищу точність і надійність у роботі. І так само енергоспоживання даної схеми також більш низьке.
Тепер розглянемо роботу системи для визначення складу вихлопних газів автомобілів. Після того як датчики для визначення концентрації вихлопних газів автомобілів підключені до живлення вони починають вимірювати концентрацію вихлопних газів в середовищі, де вони безпосередньо знаходяться і під дією зовнішніх факторів починають формувати аналоговий сигнал. Після того, як з персонального комп'ютера буде поданий запит про стан того чи іншого датчика, мікроконтролер подає сигнал мультиплексору про підключення того чи іншого вимірювального каналу, далі аналоговий сигнал з будь-якого датчика подається на АЦП, де аналоговий сигнал перетворюється в цифровий код і потім подається на мікроконтролер. Мікроконтролер обробляє ці дані і через блок гальванічної розв'язки передає на перетворювач інтерфейсів інформацію формату інтерфейсу USART, перетворювач міняє формат даних в зручну для порту RS – 485, яким обладнаний комп’ютер, вже підготовлену кодову інформацію комп’ютер в свою чергу розшифровує її і подає в зручній для оператора формі або на пристрої контролю, які можуть керувати процесом і надалі при будь-яких критичних ситуаціях.
3 Розробка електричної принципової схеми системи для визначення складу вихлопних газів автомобілів
3.1 Вибір мікроконтролера
Оберемо мікроконтролер для реалізації даної ІВС. Використаємо 8-розрядний мікроконтролер фірми Atmel серії ATMega48.
ATMega48 - низкьопотребуючі 8-бітні мікроконтролери з AVR RISC архітектурою. Виконуючи команди за один цикл, ATMega48 досягають продуктивності 1 MIPS при частоті генератора, що задає 1 МГц, що дозволяє розробнику досягти продуктивності.
AVR ядро об'єднує велику систему команд і 32 робочих регістра загального призначення. Усі 32 регістра безпосередньо пов'язані з арифметико-логічним пристроєм (АЛУ), що дозволяє отримати доступ до двох незалежних регістрів при виконанні однієї команди. У результаті ця архітектура дозволяє забезпечити в десятки разів більшу продуктивність, ніж стандартна CISC архітектура.
ATMega48 мають наступні характеристики: 4КБ внутрішньосистемної програмованої Flash пам'яті програми, 256 байтну EEPROM пам'ять даних, 512 байтну SRAM, 23 лінії введення - виведення загального застосування , 32 робочих регістра загального призначення, три гнучких таймера / лічильника зі схемою порівняння, внутрішні та зовнішні джерела переривання, послідовний програмований USART, проводний інтерфейс, 6 канальний АЦП (8 - канальний у приладів в TQFP і MFL корпусах) , 4 із (6) каналів яких мають 10 - бітну розрядність, а 2 - 8 - бітну, програмований сторожовий таймер з вбудованим генератором, SPI порт і п'ять програмно ініціалізіруємих режимів зниженого споживання. У режимі Idle зупиняється ядро, а SRAM, таймери / лічильники, SPI порт і система переривань продовжують функціонувати. У Power-down режимі вміст регістрів зберігається, але відключаються всі внутрішні функції мікропроцесора до тих пір, поки не відбудеться
переривання або апаратне скидання. У режимі Power-save асинхронні таймери продовжують функціонувати, дозволяючи відраховувати тимчасові інтервали в той час, коли мікропроцесор знаходиться в режимі сну. У режимі ADC Noise Reduction зупиняється обчислювальне ядро і всі модулі введення-виведення, за винятком асинхронного таймера і самого АЦП, що дозволяє мінімізувати шуми протягом виконання аналого-цифрового перетворення. У Standby режимі задає генератор працює, в той час як інша частина приладу не діє. Це дозволяє швидко зберегти можливість швидкого запуску приладів при одночасному зниженні споживання.
Прилад виготовлений за високощільної енергонезалежній технології виготовлення пам'яті компанії Atmel. Вбудована ISP Flash дозволяє перепрограмувати пам'ять програми в системі через послідовний інтерфейс SPI програмою-завантажувачем, що виконується в AVR ядрі, або звичайним програматором енергонезалежній пам'яті. Програма-завантажувач здатна завантажити дані з будь-якого інтерфейсу, що є у мікроконтролера. Програма в завантажувальному секторі продовжує виконуватися, навіть при заванта-женні області пам'яті прикладної програми, забезпечуючи реальний режим "зчитування при запису". Об'єднавши 8 - бітове RISK ядро і самопрогра-муються усередині системи Flash пам'яттю корпорація Atmel зробила прилади ATMega48/ATMega88/ATMega168 потужними мікроконтролера, що забезпечують більшу гнучкість і цінову ефективність широкому колу керуючих пристроїв.
ATMega48 підтримується різними програмними засобами та інтегрова-ними засобами розробки, такими як компілятори C, макроассемблери, про-грамні відладчики / симулятори, внутрішньосхемного емулятори та ознайомчі набори.
AVR ядро об'єднує потужну систему команд з 32 8-розрядними регістрами загального призначення і конвеєрне звернення до пам'яті програм.
Виконання відносних