Курсовая работа: Современные информационные технологии в журналистики
Стоимость системы NORAD измерялась десятками миллиардов долларов. В рамках такого бюджета действительно нашлись те несколько миллиардов, которые были использованы для создания глобальной компьютерной сети, обрабатывающей информацию со станций наблюдения.
Сеть системы NORAD не долго оставалась внутриведомственной. Сразу после запуска началось подключение к ней служб управления авиаполетами — это логично, ведь все равно система контролировала воздушное пространство на огромных просторах. Сначала подключались военные авиаслужбы, но уже в середине 60-х годов активно шло подключение гражданских авиационных служб. Сеть неуклонно расширялась и развивалась, она вбирала в себя метеорологические службы, службы контроля состояния взлетных полос аэродромов и другие системы, как военные, так и гражданские.
Вот так и получилось, что задолго до создания проекта ARPANET, в США уже действовала глобальная компьютерная сеть Министерства обороны.
Первая очередь системы NORAD была завершена в мае 1964 года, но к тому времени уже стало известно о существовании в России ядерных зарядов мощностью 50 мегатонн. Несмотря на то, что гора, в которой разместился центр управления, отбиралась очень тщательно (она представляет из себя единый скальный массив), стало ясно, что и у нее нет шансов. А выход из строя центра управления однозначно вызывал (в те годы) выход из строя всей глобальной системы. В итоге многомиллиардная затея с разработкой и строительством подземного центра управления оказалась бесполезной. Поэтому во второй половине 60-х годов перед Пентагоном встала проблема разработки такой архитектуры глобальной Сети, которая не выходила бы из строя даже в случае поражения одного или нескольких узлов.
В качестве экспериментальной площадки было предложено использовать университетские компьютеры и вычислительные центры научных организаций. С точки зрения военных эксплуатация сети в научном и университетском окружении должна была стать для неё самым суровым испытанием, какое только можно придумать. В борьбе со множеством непредсказуемых случайностей университетские круги рано или поздно должны были найти простое и эффективное решение. Так оно и произошло. Решением проблемы стало внедрение в 1983 г. протокола TCP/IP. С этого времени отсчитывают второй этап развития Интернета[7] .
Строго говоря, TCP/IP — это не один протокол, а пара протоколов, один из которых (TCP — TransportControlProtocol) отвечает за то, как представляются данные в Сети, а второй (IP — InternetProtocol) определяет методику адресации, то есть отвечает за то, куда они отправляются и как доставляются. Эта пара протоколов принадлежит разным уровням и называется стеком протоколов TCP/IP. Собственно говоря, только с появлением IP-протокола и появилось понятие Интернет.
Долгое время Интернет оставался уделом специалистов. Его революционное развитие началось только после 1993 г. с увеличением в геометрической прогрессии числа узлов и пользователей. Поводом для революции стало появление службы WorldWideWeb (WWW), основанной на пользовательском протоколе передачи данных HTTP и на особом формате представления данных — HTML. Документы, выполненные в этом формате, получили название Web-страниц.
Одновременно с введением концепции WWW была представлена программа Mosaic, обеспечивающая отправку запросов и прием сообщений в формате HTML. Эта программа стала первым в мире Web-браузером, то есть программой для просмотра Web-страниц. После этого работа в Интернете перестала быть уделом профессионалов. Интернет превратился в распределенную по миллионам серверов единую базу данных, навигация в которой не сложнее, чем просмотр обычной мультимедийной энциклопедии[8] .
В действительности Internet не просто сеть, - она есть структура, объединяющая обычные сети. Internet - это «Сеть сетей». В Internet нет единственной авторитарной фигуры. Высшая власть, где бы Internet ни была, остается за ISOC (Internet Society). ISOC - общество с добровольным членством. Его цель - способствовать глобальному обмену информацией через Internet. Оно назначает совет старейшин, который отвечает за техническую политику, поддержку и управление Internet.
Сегодня Интернет — это крупный комплекс, включающий в себя более 12 тысяч локальных сетей, автономные компьютеры, соединенные между собой любыми средствами связи, а также программное обеспечение, которое обеспечивает взаимодействие всех этих средств на основе единого транспортного протокола TCP и адресного протокола IP.
Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует своеобразное ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.
1.2. Изменения в сфере радиовещания и совершенствование технологии передачи звука на расстоянии.
Звук сегодня является действительно неотъемлемым элементом мультимедийных домашних страниц в интернете. Современные звуковые технологии в интернете ориентированы на решение самых разнообразных задач – от вещательной передачи звуковых фрагментов в реальном масштабе времени до традиционных систем с растянутой во времени загрузкой файлов и последующим их воспроизведением, причем применяются для этого самые различные форматы передачи звукоданных.
Сегодня в распоряжении пользователей целый ряд стандартных форматов звуковых файлов:
1) WAV (от waveform - форма сигнала), или просто wave-файлы. Это наиболее распространенный формат звукоданных в компьютерах на платформе IBM/Windows. (При наличии соответствующего программного обеспечения можно воспроизводить WAV-файлы на персональных компьютерах платформы Macintosh и других системах);
2) AU (Sparc-аудио) является одним из самых старых звуковых форматов для Интернет, и средства его воспроизведения разработаны практически для всех компьютерных платформ;
3) AIFF (Audio Interchange Format) - формат обмена звуковой информацией, особенно распространенный на платформе Macintosh. Он широко применяется в мультимедиа-приложениях, но не является общепринятым в Web;
4) MIDI (Musical Instrument Digital Interface) - интерфейс электронных музыкальных инструментов. Данный формат представляет не оцифрованный звук, а ноты и другую информацию, с помощью которой можно затем синтезировать музыку. Формат MIDI имеет широкую поддержку и позволяет получить компактные файлы, но в Интернет полезен лишь для ограниченного класса приложений;
5) MPEG - (Moution Picture Enhancing Group) стандартизованное в ИСО (стандарты 11172-3 и 13818-3) семейство форматов различного уровня сложности с гибкими возможностями сжатия аудио- и видеоданных. В то же время MPEG еще не настолько распространен, как многие привыкли считать, и разработка и стандартизация MPEG еще не завершена (сейчас готовится новый стандарт MPEG-4). И, несмотря на хорошее качество и высокую эффективность передачи, аппаратно-программные средства кодирования и декодирования MPEG пока не так уж распространены.
Звуковые файлы форматов AU и WAV воспроизводятся вспомогательными приложениями и интегрируемыми модулями, но собственная поддержка данных форматов в пользовательских программах-браузерах (навигаторах) по Интернет, наиболее распространенных сегодня - Netscape 3.0 и Internet Explorer 3.0 отсутствует. Качество воспроизведения формата WAV не настолько хорошее, как можно было бы ожидать от файлов такого размера. MIDI-файлы могут аппаратно воспроизводиться звуковыми картами персональных компьютеров (такими, например, как SoundBlaster) и по качеству напоминают мелодии, издаваемые простым электромузыкальным клавишным инструментом.
Если необходим звук профессионального качества при высоком уровне уплотнения, то единственным выбором является формат MPEG. Он дает приемлемые результаты и в тех случаях, когда очень хорошее качество необязательно, однако такой недостаток программного обеспечения для его воспроизведения, как реализация только в виде вспомогательных приложений, а не интегрируемых модулей или собственных средств браузеров, нередко заставляет отдавать предпочтение другим форматам[9] .
Хотя в общем случае при загрузке и воспроизведении звуковых файлов через Интернет следует придерживаться стандартных форматов, один патентованный формат заслуживает особого упоминания. Это RapidTransit фирмы FastMan. В нем используется схема адаптивного уплотнения волнового сигнала. Например, 30-секундный музыкальный фрагмент "Hootie and the Blowfish" такого же качества, какое достигается воспроизведением записи с компакт-диска, в неуплотненном виде занимает объем 2,69 Мбайт, а после сжатия в формате RapidTransit - всего 90 Кбайт. Патентованные форматы предлагают то, чего не хватает многим «стандартным» форматам цифрового звука, а именно возможности организации непрерывного потока данных (т.е. передачи в реальном масштабе времени). Потоковые звукоданные не требуют дискового пространства и допускают произвольный доступ к любому месту звукового файла.
Между тем у поточных звукоданных есть несколько потенциальных недостатков.
Во-первых, чтобы в достаточной мере сжать звукоданные для поточновой передачи, приходится жертвовать качеством звукопередачи. Во-вторых, сами протоколы Интернет не приспособлены к непрерывному поточному обмену. Каждый, кому в течение какого-то времени приходилось работать с Интернет, без сомнения, сталкивался с периодически возникающими задержками.
Впервые практическая передача звука через интернет в непрерывном поточном режиме была реализована в разработках фирмы Progressive Networks. На ее узле RealAudio для пересылки непрерывных звукоданных вспомогательному приложению браузера, интегрируемому модулю Netscape (Shockwave Xtra) или элементу управления ActiveX используется специальный программный сервер. Благодаря наличию средств воспроизведения на всех основных компьютерных платформах RealAudio является сегодня наиболее распространенным форматом непрерывной передачи звукоданных в интернете, его используют большинство крупных звуковых служб и звуковых серверов. В настоящее время, несмотря на значительную конкуренцию и архитектурные ограничения, формат RealAudio доминирует на рынке звуковых средств.
Основное достижение компании Progresive Networks состоит в том, что она разработала расширение языка HTML для прослушивания звуковых файлов с помощью системы RealAudio, состоящей из сервера, где хранятся звуковые файлы в гипертекстовом формате, и «проигрывателя», встраиваемого в программу просмотра. Щелчком мыши по значку звуковой связи на Web-странице пользователь инициирует непрерывную передачу пакетов информации с сервера по сети интернет. «Проигрыватель» системы RealAudio вместе со звуковой картой персонального компьютера превращает этот поток данных в звук.
Специалисты предсказывают дальнейшее повышение качества звука по мере совершенствования ЭВМ. В настоящий момент при пересылке звукоданных через модемы на скорости 14,4 Кбит/с обеспечивается качество звучания, как у радиоприемников с амплитудной модуляцией (АМ-качество). Однако при увеличении скорости передачи до 28,8 Кбит/с можно добиться качества звучания радиоприемников с частотной модуляцией (ЧМ-качество). В общем, перспектива получения качественного звука с помощью микросхем обработки цифровых сигналов, расположенных на звуковой плате или в модеме, выглядит весьма привлекательно.
На фоне отвлеченных споров о будущем интернета, о протоколах и стандартах, призванных обеспечить внедрение новейших технологий, отрадно наблюдать, как одна из них – передача звукоданных – развивается практически. Причем в данном случае понятно назначение информации и известны ее потребители. Разработанные звуковые технологии масштабируемы, опираются на уже существующие стандарты и готовы к переносу в более скоростные сети, как только те станут реальностью. Тогда по сети будут передаваться звуковые потоки с качеством CD и без всяких перерывов.
Появилось несколько возможных способов применения звуковых потоков в Интернет. Почти очевидным стало перенесение систем радиовещания из обычного радиоэфира в цифровые сети. Тысячи радиостанций установили у себя потоковые серверы и начали передавать свои обычные «живые» программы в Интернет.