Курсовая работа: Современный подход к классификации режимов искусственной вентиляции легких

Повреждение основных систем (вентилятор неуправляем)

Неправильные настройки вентилятора

Инверсионное отношение времени вдох/выдох

Тревоги выхода

Давление

Объем

Поток

Время

Высокая и/или низкая частота дыханий вентилятора

Высокое и/или низкое время вдоха

Высокое и/или низкое время выдоха (апноэ)

Вдыхаемый газ

Высокая и/или низка температура вдыхаемого газа

Высокое и/или низкое содержание О2

Результат выражается как уравнение движения для системы органов дыхания (упрощенная версия) [ChatburnR. L., PrimianoF. P., Jr, 1988]:

Давление мышц + давление вентилятора

= эластичность х объем + сопротивление х поток

(1)

Давление Мышц + давление вентилятора

= эластическое наполнение + упругое наполнение

(2)

В этом упрощенном варианте давление мышц представляется как трансреспираторное давление (то есть, давление дыхательных путей минус давление поверхности тела), произведенное дыхательными мышцами, чтобы расширить грудную клетку и легкие. Можно сказать, что давление мышц является воображаемым (мнимым), потому что его невозможно непосредственно измерить. Давление вентилятора – это трансреспираторное давление, создаваемое им во время вдоха. Сочетание давления мышц и вентилятора создает объем и поток, доставляемые пациенту. Но усилие мускулатуры пациента увеличивает объем легкого за счет уменьшения давления относительно атмосферного, в то время как вентилятор увеличивает объем легкого, увеличивая давление относительно атмосферного давления. Общее давление – результат усилия пациента, вдыхающего газ в легкие и вентилятора, вдувающего газ в легкие. Давление, объем и поток, изменяются со временем и, следовательно, являются переменными. Эластичность и сопротивление приняты к константе, а их совместный эффект составляет наполнение, производимое вентилятором и дыхательными мышцами. Эластичность (комплайнс, податливость торакопульмональной системы) определена как отношение дыхательного объема к давлению в дыхательных путях (мл/см. вод. ст), а сопротивление (упругость, аэродинамическое сопротивление дыхательных путей и искусственных воздуховодов) определено, как отношение дыхательного объема к давлению за единицу времени (мл/см. вод. ст. /сек). Эластичное наполнение - давление, необходимое для преодоления эластичности (комплайнса) системы органов дыхания, упругое наполнение - давление, необходимое для преодоления сопротивления потоку в дыхательных путях (включая интубационную трубку) наряду с легкими и сопротивлением тканей грудной клетки.

Необходимо обратить внимание, что давление, объем и поток - все измерены относительно их начальных значений (то есть, их значений в конце выдоха). Это означает, что давление вдоха измерено как изменение в давлении дыхательных путей выше РЕЕР. Это причина того, например, что уровни поддержки давления измерены относительно РЕЕР. Объем измеренный как изменение легочного объема выше ФОЕ, и изменение легочного объема в течение дыхательного периода определено как дыхательный объем (ДО). Поток измерен относительно его конечно-экспираторного значения (обычно ноль). Когда давление, объем и поток представлены как функции времени, то для управляемой объемом вентиляции и управляемой давлением вентиляции имеются характерные формы кривых (рисунок 2-2).

Заштрихованные поля показывают давление, вызванное сопротивлением; открытые поля показывают давление, вызванное эластичностью («эластической отдачей»).

Заметьте, что, если дыхательная мускулатура пациента не функционирует, давление мышц равно нулю, и вентилятор должен произвести все давление, необходимое для доставки ДО и создания потока вдоха. Наоборот, если давление вентилятора будет равно нулю (то есть, давление дыхательных путей не нарастает выше нулевой линии во время вдоха) и пациент не дышит, то не имеется никакой вентиляционной поддержки. Между этими двумя крайностями имеется бесконечное разнообразие комбинаций давления, создаваемого дыхательной мускулатурой и поддержки вентилятором, которые являются теоретически возможными для частичной вентиляционной поддержки.

Концепция мышечного давления важна по следующей причине. Имеются много вентиляторов и прикроватных мониторов легочной функции, которые обеспечивают клинициста оценками комплайнса и сопротивления системы органов дыхания, основанных на трансреспираторном давлении системы (то есть, давлении вентилятора), объеме и потоке. Все из них делают вычисления на основе этой версии уравнения движения:

Давление Вентилятора = эластичность х объем + сопротивление х поток (3)

Оно не содержит выражения для давления мышц. Это подразумевает, что любое измерение механики системы органов дыхания имеет смысл при условии, если дыхательные мышцы бездействуют. Если пациент делает дыхательное усилие в течение вспомогательного дыхания, то он добавляет неизмеренное количество движущего давления к давлению, произведенному вентилятором. Таким образом, эластичность и сопротивление, основанные только на измерениях аппаратного датчика давления дыхательных путей, недооценивают истинные значения.

Анализ взаимодействия «вентилятор-пациент» на основе математической модели предполагает надлежащее использование слова «assist»(помогать), которое является другим, часто путаемым понятием. Словарь Вебстера определяет assist как «помогать; оказывать поддержку». Из уравнения движения следует, что всякий раз, когда давление дыхательных путей (то есть, давление вентилятора) повышается выше начального в течение вдоха, вентилятор работает на пациента. Таким образом, дыхание, как считают, является вспомогательным, независимо от других дыхательных характеристик (то есть, классифицируется ли дыхание как спонтанное или принудительное). Важно не путать это значение слова «помогать» с определенными названиями режимов вентиляции (например, ASSIST / CONTROL). Изготовители вентиляторов часто присваивают названия режимам вентиляции без рассмотрения последовательности или теоретической уместности.

К-во Просмотров: 231
Бесплатно скачать Курсовая работа: Современный подход к классификации режимов искусственной вентиляции легких