Курсовая работа: Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора

,

что и означает, что .

Доказано.

Теорема 7. Если А – ограниченный линейный оператор в банаховом пространстве и >, то – регулярная точка.

Доказательство:

Так как, очевидно, что ,

то

При < этот ряд сходится (см. теорему 5), т.е. оператор имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле.

Доказано.

Из выше доказанной теоремы вытекает разложение резольвенты в ряд Лорана на бесконечности

При < этот ряд сходится. Но – это наименьшее из чисел С, удовлетворяющих неравенству:

Аf=Cf, если С – собственное значение, то и , то для наибольшего по модулю из собственных значений неравенство будет иметь место, с другой стороны, это число будет наименьшим. Следовательно, ряд будет сходиться при <(А), где (А) – наибольший модуль собственных значений оператора А. Величина (А) называется спектральным радиусом оператора А.

Теорема 8: (А)=.

Для доказательства воспользуемся теоремой Коши-Адамара, сформулируем её. Теорема Коши-Адамара: Положим , . Рассмотрим степенной ряд . Тогда он сходится всюду в круге и расходится всюду вне этого круга.

Доказательство:

Рассмотрим разложение резольвенты в ряд Лорана как степенной ряд:

.

По теореме Коши-Адамара его радиус сходимости равен числу

, но с другой стороны радиус сходимости ряда Лорана резольвенты есть спектральный радиус.

Доказано.

Уравнение Гильберта: .

Доказательство:

Возьмем . Учитывая, что , получаем следующее:

, что и требовалось доказать.

Доказано.

Следствие из уравнения Гильберта: .

К-во Просмотров: 258
Бесплатно скачать Курсовая работа: Спектр оператора. Применение нестандартного анализа для исследования резольвенты и спектра оператора