Курсовая работа: Спектрометрическое сканирование атмосферы и поверхности Земли

Введение

1. Принципиальная схема дистанционного зондирования

2. Аппаратура для аэрокосмических исследований

Литература


ВВЕДЕНИЕ

Материалы дистанционного зондирования (ДЗ) являются частью большой системы сбора, переработки, регистрации и использования данных. Правильно организованная система дистанционных исследований должна быть ориентирована на решение конкретных геологических задач, обусловливающих выбор орбит космических носителей, набор датчиков, характер сбора, переработки и передачи на наземные комплексы первичных данных и тип представляемых пользователю материалов.


1. ПРИНЦИПИАЛЬНАЯ СХЕМА ДИСТАНЦИОННОГО ЗОНИРОВАНИЯ

На рис. 1 изображена упрощенная структурная схема системы ДЗ. Система состоит из нескольких взаимосвязанных элементов, или блоков.

Рис. 1. Структурная схема системы дистанционного зондирования

Сцена - это то, что находится перед датчиком; построение геологической модели сцены является в самом общем виде той целью, ради которой создается система. Изучение сцены на расстоянии возможно благодаря тому, что она обнаруживает себя в физических полях, которые могут быть измерены. Наиболее часто используются излученные или отраженные электромагнитные волны, в последнем случае необходим источник освещения , пассивный (например. Солнце) или активный (лазеры, радиолокаторы и др.). Физические поля измеряются датчиками , входящими в состав высотного комплекса , который кроме измерений служит для первичной обработки и передачи данных на Землю. Данные, закодированные в электромагнитном сигнале или записанные на твердотельные носители (фотопленки, магнитные ленты и пр.), доставляются в наземный комплекс , в котором происходит их прием, обработка, регистрация и хранение. После обработки данные обычно переписываются в кадровую форму и выдаются в качестве материалов дистанционного зондирования , которые по традиции называются космическими снимками. Пользователь , опираясь на внешнюю базу знаний, а также собственный опыт, интуицию, проводит анализ и интерпретацию материалов ДЗ и создает геологическую модель сцены, которая и является формой регистрации решения поставленной проблемы. Достоверность модели проверяется сопоставлением, или идентификацией модели и сцены; идентификация замыкает систему и делает ее пригодной для прикладного пользования.

Системы ДЗ разрабатываются в двух вариантах - ориентированныe на изображение и ориентированные на число. Первый вариант рассчитан на визуальное дешифрирование материалов ДЗ, которые в свзи с этим предоставляются пользователю в виде КС. Второй учитывает возможность автоматического (компьютерного) распознавания геологических и других образов. Образные и числовые варианты дистанционного зондирования дополняют друг друга. Несмотря на то, что технология автоматического распознавания образов появилась позже и связана с прогрессивным и дорогим техническим обеспечением, визуальный анализ и геологическая (экологическая) интерпретация КС сохраняют свое лидирующее положение. Чтобы понять причины этой ситуации, необходимо рассмотреть основные способы получения материалов дистанционного зондирования и сопоставить принципы, лежащие в основе автоматического и визуального дешифрирования МДЗ.

Техника получения материалов дистанционного зондирования

При съемке земной поверхности существенную роль играет выбор орбиты полета ИСЗ. Для фотографирования Земли предпочтительными являются круговые орбиты, благодаря чему достигается одинаковыми масштаб снимков по всей трассе полета ИСЗ. Большое значение имеет наклонение орбиты - величина угла, образованного плоскостью экватора и плоскостью орбиты. В зависимости от наклонения орбиты бывают экваториальными (наклонение 0°), полярными (наклонение 90°) и наклонными. При запуске ИСЗ на полярные (или квазиполярные) орбиты бортовая аппаратура используется для исследования всей земной поверхности. При углах наклона орбит до 50-60° приполярные области не попадают в поле зрения бортовой аппаратуры.

Типы орбит датчиков дистанционного зондирования

Рис. 2. Зависимость зоны обзора дистанционного датчика от типа орбиты

Наклонение орбиты ИСЗ является важным параметром, так как определяет широтный пояс поверхности Земли, который подлежит фотографированию. Трасса полета ИСЗ не может выйти за пределы этого широтного пояса, поэтому от наклонения и высотыорбиты зависит ширина фотографической полосы. Здесь устанавливается прямая зависимость: чем больше угол наклона орбиты и чем больше ее высота, тем шире снимаемая полоса земной поверхности (рис.2). Помимо круговых орбит, по которым обычно летают метеорологические спутники, ПКК и орбитальные станции, для постоянного наблюдения за глобальными процессами на Земле используются эллиптические орбиты с большой разницей высот в апогее и перигее. По отношению к Солнцу или Земле выделяют два вида орбит - геосинхронную и гелиосинхронную.

Геосинхронные (геостационарные) орбиты предназначены для движения спутника вокруг Земли с угловой скоростью, равной скорости вращения Земли, что обусловливает зависание спутника над определенным участком земной поверхности и постоянное наблюдение за ним.

Гелиосинхронные орбиты предназначены для повторных съемок одних и тех же участков земной поверхности при одинаковых условиях освещения через равные промежутки времени. Примером может служить американский спутник "Лэндсат", летающий по гелиосинхронной орбите и возвращающийся в исходную точку съемки через 18 суток. Съемка с гелиосинхронных орбит может широко использоваться для изучения динамики современных геологических процессов.

Фотосъемки

Фотографическую съемку поверхности Земли с высот более 150 - 200км принято называть космической. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне. Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности.

В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм). Для съемки земной поверхности с ПКК используются фотографирующие системы следующих марок: КАТЭ-140, МКФ-6, ФМС и ДР. Фотографическая камера МКФ-6М имеет шесть спектральных каналов, работающих в следующих зонах спектра (мкм): 0,45- 0,50; 0,52-0,56; 0,58-0,62; 0,64-0,68; 0,70-0,74; 0,78-0,86. Изображение отличается высоким разрешением и может быть увеличено в несколько раз без потери информативности. Масштаб снимков, снятых с высоты 265 км, немногим мельче 1:2 000 000. Зональные снимки 1-4 каналов выдерживают увеличение до 60 раз и в таком увеличенном виде вполне пригодны для целей геологического дешифрирования. Снимки, полученные по пятому и шестому каналам, выдерживают увеличение только 10Х. Отметим, что фотографическая съемка - в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18Х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно. Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС. Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

Сканерные съемки

В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного, назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин "сканирование" обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи (рис.). Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение - упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму. В геологии используются материалы сканерных съемок с ИСЗ серии "Метеор". На этих спутниках установлены сканирующие устройства различной конструкции: с малым разрешением - МСУ-М, со средним разрешением - МСУ-С, с конической разверткой - МСУ-СК, с электронной разверткой - МСУ-Э (табл. 3).


Таблица

: Технические характеристики сканирующих устройств
Параметры МСУ-М МСУ-С МСУ-СК МСУ-Э
Полоса обзора, км 1930 1380 600 28
Угол сканирования, град 106 90 66,5 2,5
Число элементов в активной части строки 1880 5700 3614 1000
Число спектральных каналов 4 2 4 3
Разрешение на местности по строке, км 1 0,24 0,175 0,028
Масса, кг 4,5 5,5 47 17

Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

Хорошо зарекомендовал себя сканер нового поколения, названный "тематическим картографом", которым были оснащены американские ИСЗ "Лэндсат-4 и -5". Сканер типа "тематический картограф" работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазрне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения. число пикселов на снимках достигает более 36 млн. на каждом из каналов. Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации - сканирующие радиометры - и излучения - сканирующие спектрометры.

Радарные съемки

Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т. п. Она может проводиться в темное время суток, поскольку является активной. Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ.

С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности: могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная - для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования. Во многих частях Земли, в частности в затаеженных районах Сибири, Я долине Амазонки и т. п.

Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шатл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы "Лэндсат". Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки "Лэндсат". Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли - пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

Классичесими уже стали результаты картирования поверхности Венеры - планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

Тепловые съемки

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на. широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

· ближний (0,74-1,35),

· средний (1,35-3,50)

· дальний (3,50-1000).

Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 320
Бесплатно скачать Курсовая работа: Спектрометрическое сканирование атмосферы и поверхности Земли