Курсовая работа: Спиновый дихроизм нейтронов и ядерный псевдомагнетизм
Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импульс.
Для волновых функций справедлив принцип суперпозиции.
Волновая функция в квантовой механике, величина, полностью описывающая состояние микрообъекта (например, электрона, протона, атома, молекулы) и вообще любой квантовой системы (например, кристалла).
Описание состояния микрообъекта с помощью волновой функции имеет статистический, т. е. вероятностный характер: квадрат абсолютного значения (модуля) волновая функция указывает значение вероятностей тех величин, от которых зависит волновой функции Например, если задана зависимость волновой функции частицы от координат х, у, z и времени t, то квадрат модуля этой волновой функции определяет вероятность обнаружить частицу в момент t в точке с координатами х, у, z. Поскольку вероятность состояния определяется квадратом Волновой функции, её называют также амплитудой вероятности.
Волновая функция одновременно отражает и наличие волновых свойств у микрообъектов. Так, для свободной частицы с заданным импульсом р и энергией E, которой сопоставляется волна де Бройля с частотой ω = E/ђ и длиной волны λ = ђ/p (где ђ — постоянная Планка), Волновая функция должна быть периодична в пространстве и времени с соответствующей величиной λ и периодом Т = 1/v.
Для волновой функции справедлив суперпозиций принцип: если система может находиться в различных состояниях с волновой функции ψ1, ψ2.., то возможно и состояние с Волновой функции, равной сумме (и вообще любой линейной комбинации) этих Волновая функция Сложение Волновой функции (амплитуд вероятностей), а не вероятностей (квадратов Волновой функции) принципиально отличает квантовую теорию от любой классической статистической теории (в которой справедлива теорема сложения вероятностей)[4].
Амплитуда рассеяния.
Амплитуда рассеяния в квантовой теории столкновений – величина, количественно описывающая столкновение микрочастиц.
Пучок падающих на мишень частиц (с определённым импульсом) рассеивается; при этом частицы могут отклониться в любом направлении. Относительное число частиц, вылетающих под разными углами к первоначальному направлению пучка, зависит от конкретного закона взаимодействия рассеиваемых частиц с частицами мишени. Вероятность рассеяния частицы под данным углом определяется амплитуда рассеяния.
Одна из основных количественных характеристик, как упругого рассеяния, так и неупругих процессов, — эффективное поперечное сечение процесса (называемое обычно просто сечением) — величина, пропорциональная вероятности процесса и имеющая размерность площади. Измерение сечений процессов позволяет изучать законы взаимодействия частиц, исследовать структуру частиц. Например, классическими опытами Э. Резерфорда по рассеянию a-частиц атомами было установлено существование атомных ядер (см. Резерфорда формула); из опытов по рассеянию электронов большой энергии на протонах и нейтронах (нуклонах) получают информацию о структуре нуклонов; эксперименты по упругому рассеянию нейтронов и протонов протонами позволяют детально исследовать ядерные силы и т.д [5].
Поляризация нейтронного пучка.
Если к нейтрону приложить электрическое поле E, то он слегка деформируется, поскольку к положительному и отрицательному составляющим его зарядам будут приложены противоположные силы. Возникнет наведенный электрический дипольный момент dα, причем его величина будет пропорциональна величине приложенного поля: dα = αn · E.
Здесь αn — так называемая электрическая поляризуемость нейтрона. Она характеризует "жесткость" нейтрона, т.е. его внутреннюю структуру. Ее удалось измерить только в 1991 году (группа Шмидмайера в Австрии). Оказалось αn = (1, 20 ± 0, 20) · 10-3 Фм3 , здесь использована единица длины: ферми (1 Фм = 10-13 см), которая имеет порядок размера нуклона. Такая поляризуемость соответствует возникновению наведенного ЭДМ dα ≈ 10-27 е·см, если к нейтрону приложить поле ≈ 108 В/см, которое соответствует по порядку величины межатомным полям в веществе и приблизительно в 103 раз превосходит поля, достижимые в лаборатории. Конечно, даже такая величина поля совершенно недостаточна, чтобы привести к какомулибо наблюдаемому эффекту. Гораздо более сильные электрические поля имеются вблизи поверхности атомного ядра, например, вблизи ядер свинца они могут достигать величин ≈ 1021 В/см. Именно эти поля и удалось использовать для измерения электрической поляризуемости нейтрона при рассеянии нейтронов на атомах свинца[2].
2.1 Получение выражения для амплитуды рассеяния нейтрона в ядерной среде.
Рассмотрим в виде таблицы как может осуществляться последовательный переход от движения сводного нейтрона к движению среди множества ядер.
Таблица 2.1.1 – Сравнительная характеристика волновых функций нейтрона в различных ситуациях
Мишень (ядро) |
ВФ нейтрона после рассеяния без учета спинов ВФ | ВФ нейтрона после рассеяния с учетом спинов ВФ |
отсутствие | ||
Ядро в точке
| ||
Ядро в точке
| ||
Множество ядер в точках
|
- спиновая волновая функция ядер
P=<J>/J – вектор поляризации ядер
Таблица 2.1.2 сравнительная характеристика координатного и спинового усреднения волновой функции
этап | 1 | 2 |
По спиновому состоянию ядер |
К-во Просмотров: 270
Бесплатно скачать Курсовая работа: Спиновый дихроизм нейтронов и ядерный псевдомагнетизм
|