Курсовая работа: Спиральная антенна
1.4. Наиболее выгодный режим — осевого излучения, который, как известно, требует длины витка и обеспечивает полосу пропускания
. Эта полоса может быть значительно расширена путем перехода к конической антенне (рис, 1, б), в которой участок (2) со средней длиной витка
удовлетворяет условию
, а крайние участки (1, 3) с большими (
) и меньшими (
) длинами витков удовлетворяют аналогичным условиям, но для максимальной
и минимальной
длин волн рабочего диапазона:
,
. В зависимости от рабочей длины волны
интенсивно излучает только одна из зон спирали и только этой активной зоной определяется острота ДН.
2. Расчетные соотношения для цилиндрической спиральной антенны.
2.1. Чтобы получить максимальный КНД, нужно установить оптимальный коэффициент замедления, при котором в направлении оси спирали 0'0" (рис. 2) поля первого и последнего витков находятся в противофазе. Иначе говоря, необходимо дополнить условие (1) задержкой волны тока спирали на полупериод Т/2, а в каждом витке ее — на
:
.
Отсюда находим оптимальный коэффициент замедления вдоль провода спирали:
, (2)
При этом, правда, получается эллиптическая поляризация, но так как, то коэффициент
весьма незначительно отличается от
и полученную поляризацию можно считать круговой. Полагая
= 1,2 ... 1,3, определим из выражения (2) угол подъема спирали, соответствующий оптимальным условиям работы антенны
:
Отсюда
, (3)
Длина спирали подбирается в соответствии с оптимальным коэффициентом замедления вдоль оси спирали
. При
=1,2…1,3 имеем
, что соответствует углу подъема спирали
=12 ... 16° и числу витков р = 5 ... 14.
2.2. Рассматривая каждый виток спирали как элементарный излучатель с фазовым центром на оси 0'0", определяем функцию направленности антенны как произведение функции направленности одного витка
на множитель решетки из р элементов
. Так как р велико, а направленность одного витка мала, то принимаем
. В результате имеем
(4)
Угол , как и прежде, отсчитывается от перпендикуляра к оси линейной решетки.
2.3. Для спиральных антенн оптимальных размеров опытным путемустановлены следующие формулы:
ширина диаграммы направленности
, (5)
коэффициент направленного действия
, (6)
входное сопротивление
, (7)
2.4. Итак, цилиндрические и конические спиральные антенны широкополосные с осевым излучением волн круговой поляризации. Направленность цилиндрических спиралей средняя, а конических — ниже средней (не вся спираль участвует в излучении на данной частоте), но последние обладают большей диапазонностью. Применяются и те и другие как самостоятельные антенны в диапазонах дециметровых а метровых волн, а также как облучатели антенн сантиметровых волн.
3. Плоская арифметическая спиральная антенна.
3.1. В процессе развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне частот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамического подобия.
Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение длины волны сопровождается прямо пропорциональным изменением линейных размеров активной области антенны. При соблюдении данного условия антенна может быть частотно-независимой в неограниченном диапазоне волн. Однако размеры излучающей структуры конечны и рабочий диапазон волн любой антенны тоже ограничен.
Из этой группы антенн рассмотрим плоские арифметические и равноугольные спирали и логарифмически-периодические антенны.