Курсовая работа: Средства языка программирования Паскаль для решения математических задач
Разработать алгоритм и составить программу вычисления таблицы значений функции, заданной в виде разложения в ряд. Значение функции вычислять с точностью e>0, т.е. вычисление суммы членов ряда необходимо прекратить, когда абсолютная величина очередного члена ряда разложения окажется меньше e: | ак | <e.
При вычислении очередного члена целесообразно воспользоваться рекурентным выражением:
ак+1 =ск ак ; к= 0, 1, 2, ...,
где ак - некоторый к-ый член ряда; ак+1 - следующий к+1 -ый член ряда; ск - коэффициент, определяемый номером к .
При составлении программы необходимо по возможности воспользоваться операторами организации циклов WHILE , REPEAT , FOR .
Границы интервала вычислений функций a и b , величина шага изменения аргумента h и точность вычисления функции e задаются при вводе. На печать выводятся номер по порядку, значение аргумента, соответствующие ему, значение функции и номер члена ряда, на котором закончилось вычисление значение функции, в форме таблицы:
№ |
Х |
f ( x ) |
№ чл.р. |
1 | |||
2 | |||
3 | |||
... |
Функция:
2.2 Математическая формулировка задачи.
Некоторые функции нельзя представить в виде конечной формулы, но вычисление значений таких функций часто бывает необходимо для различного рода расчетов. Такие функции могут быть заданы в виде разложения в бесконечный ряд, где при бесконечном увеличении членов ряда каждый последующий член меньше предыдущего. Каждый член ряда – это конкретное значение функции. Нахождение таких членов и дает возможность вычислить значение функции. И чем больше членов ряда рассмотреть, тем более точным получится значение функции.
2.3 Численный метод решения.
Пусть требуется приближённо вычислить значение функции, заданной в виде разложения в бесконечный ряд. Идея алгоритма вычисления суммы членов ряда состоит в следующем:
Очевидно, что вычисление значения функции нужно производить за конечное число шагов. А значит, необходим некий ограничивающий фактор, в качестве которого в нашей задаче будет выступать погрешность вычислений e (e>0). Следовательно, вычислив каждый новый член ряда ak , нам необходимо проверить, не будет ли абсолютная величина очередного члена ряда меньше, чем величина погрешности e , т.е. | ak| < e . Если это неравенство не выполнилось, то следует вычислить новый член ряда, иначе можно заканчивать вычисление и выводить результат работы на экран дисплея.
Кроме того, при вычислении очередного члена целесообразно воспользоваться рекуррентным выражением: ak+1 = ck * ak; k = 0, 1, 2, …, где ak – некоторый k-ый член ряда; ak+1 - следующий k+1-ый член ряда; ck – коэффициент, определяемый номером k.
В данном случае нахождение коэффициента ck можно произвести следующим образом:
ak =;
ak +1 =;
ck =
Следовательно, зная значение предыдущего члена ряда, порядковый номер следующего и используя полученную формулу, мы значительно упрощаем нахождение нового члена нашего ряда:
ak +1 =ak *; k = 0, 1, 2, …
2.4 Описание переменных.
Имя переменной |
Тип переменной |
Значение |
K |
integer |
К-во Просмотров: 725
Бесплатно скачать Курсовая работа: Средства языка программирования Паскаль для решения математических задач
|