Курсовая работа: Статистическая оценка деятельности предприятия строительной отрасли

Значение параметров уравнения параболы рассчитываются следующим образом:

, ,

5b0 = 26720,01– 10b 2 b 2 = 259,413

57071,8 = 2(26720,01 – 10b 2 ) + 34b 2 ,

Таким образом, , ,

Уравнение параболы имеет вид:

Так как основной целью аналитического выравнивания является экстраполяция, следовательно, требуется выяснить какое из уравнений прямой или параболы – лучше описывает тенденцию динамики среднесписочной численности работников, для этого рассчитаем среднюю квадратическую ошибку уравнения тренда и коэффициент вариации:

, (1.15)

где n – число уровней ряда, m – число параметров в уравнении тренда ( для прямой m=2), - соответственно фактическое и расчётное значения уровней динамического ряда.

где - средний уровень динамического ряда. (1.16)

Для уравнения прямой:

n = 5, m = 2

Для уравнения параболы:

n = 5, m = 3

Поскольку коэффициент вариации для уравнения параболы больше, чем для уравнения прямой, то уравнение прямой более точно описывает основную тенденцию динамики ввода в действие жилья.

Аналогичные расчеты аналитического выравнивания по уравнению прямой и параболы для среднемесячной заработной платы представлены в таблицах 1.9, 1.10

Таблица 1.9 Аналитическое выравнивание среднемесячной заработной платы по прямой

годы

Среднемесячная заработная плата, грн

ti

Yi*ti

ti^2

Yt

К-во Просмотров: 691
Бесплатно скачать Курсовая работа: Статистическая оценка деятельности предприятия строительной отрасли