Курсовая работа: Свойства наночастиц
2. Определение
Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 100 нанометров обычно называют наночастицами .
3. Классификация нанообъектов
Нанообъекты делятся на 3 основных класса:
- трёхмерные частицы, получаемые взрывом проводников, плазменным синтезом, восстановлением тонких плёнок и т.д;
- двумерные объекты — плёнки, получаемые методами молекулярного наслаивания, CVD, ALD, методом ионного наслаивания и т.д;
- одномерные объекты — вискеры, эти объекты получаются методом молекулярного наслаивания, введением веществ в цилиндрические микропоры и т. д.
Также существуют нанокомпозиты — материалы, полученные введением наночастиц в какие либо матрицы. На данный момент обширное применение получил только метод микролитографии, позволяющий получать на поверхности матриц плоские островковые объекты размером от 50 нм, применяется он в электронике; метод CVD и ALD в основном применяется для создания микронных плёнок. Прочие методы в основном используются в научных целях. В особенности следует отметить методы ионного и молекулярного наслаивания, поскольку с их помощью возможно создание реальных монослоёв.
4. Свойства наночастиц
Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10..100нм. Основные физические причины этого можно проиллюстрировать на рис 1.
Для наночастиц доля атомов, находящихся в тонком поверхностном слое (~ 1 нм), по сравнению с микрочастицами заметно возрастает.
Так, например, оказывается, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.
Рис. 1. Основные физические причины специфики наночастиц (наноматериалов).
4.1 Серебро
Свойства у наночастиц серебра на самом деле уникальные. Во-первых, они обладают феноменальной бактерицидной и антивирусной активностью . Об антимикробных свойствах, присущих ионам серебра, человечеству известно уже очень давно. Наверняка, многие слышали о целительных способностях церковной «святой воды», получаемой путем прогонки обычной воды через серебряный фильтр. Такая вода не содержит многих болезнетворных бактерий, которые могут присутствовать в обычной воде. Поэтому она может храниться годами, не портясь и не «зацветая». В медицинской практике иногда назначают «серебряную» воду для лечения ран, язв, болезней мочевого пузыря. Кроме того, такая вода содержит некоторую концентрацию ионов серебра, способных нейтрализовать вредные бактерии и микроорганизмы, чем и объясняется ее благотворное влияние на здоровье человека. Установлено, что наночастицы серебра в тысячи раз эффективнее борются с бактериями и вирусами, чем серебряные ионы. Как показал эксперимент, ничтожные концентрации наночастиц серебра уничтожали все известные микроорганизмы (в том числе и вирус СПИДа), не расходуясь при этом (рис. 2).
Рис. 2. Вирусы атакуют клетку.
Кроме того, в отличие от антибиотиков, убивающих не только вредоносные вирусы, но и пораженные ими клетки, действие наночастиц очень избирательно: они действуют только на вирусы, клетка при этом не повреждается! В настоящее время проводятся исследования возможностей использования наночастиц серебра в фармацевтических препаратах. Но уже сейчас они находят достаточно широкое применение.
Так, например, в настоящее время выпускаются зубные пасты с наночастицами серебра, которые не только очищают зубы, но и эффективно защищают от различных инфекций. Также небольшие концентрации наночастиц серебра добавляют в некоторые кремы из серии «элитной» косметики для предотвращения их порчи во время использования. Добавки на основе серебряных наночастиц применяются в качестве антиаллергенного консерванта в кремах, шампунях, косметических средствах для макияжа и т.д. При их использовании наблюдается также противовоспалительный и заживляющий эффект.
Текстильные ткани, содержащие наночастицы серебра, обладают самодезинфицирующими свойствами. Такие ткани незаменимы для медицинских халатов, постельного белья и т.д.
Наночастицы способны долго сохранять бактерицидные свойства после нанесения на многие твердые поверхности (стекло, дерево, бумага, керамика, оксиды металлов и др.). Это позволяет создать высокоэффективные дезинфицирующие аэрозоли длительного срока действия для бытового применения. В отличие от хлорки, карболовой кислоты и других химических средств обеззараживания, аэрозоли на основе наночастиц не токсичны и не вредят здоровью людей и животных.
Если добавить в лакокрасочные материалы, покрывающие стены зданий, наночастицы серебра, то на покрашенных такими красками стенах и потолках не может жить большинство патогенных микроорганизмов. Добавка в угольные фильтры для воды наночастиц серебра существенно увеличивает срок службы таких фильтров, а качество очистки воды при этом возрастает на порядок.
Помимо обеззараживающих свойств, наночастицы серебра обладают также высокой электропроводностью , что позволяет создавать различные проводящие клеи. Проводящий клей может быть использован, например, в микроэлектронике для соединения мельчайших электронных деталей.
Таким образом, крошечные, незаметные, экологически чистые серебряные наночастицы могут применяться везде, где необходимо обеспечить чистоту и гигиену: от косметических средств до обеззараживания хирургических инструментов или помещений.
4.2 Оксид цинка
Наночастицы оксида цинка также обладают рядом уникальных свойств (в том числе и бактерицидных ), среди которых особый интерес вызывает способность поглощать широкий спектр электромагнитного излучения , включая ультрафиолетовое, инфракрасное, микроволновое и радиочастотное.
Такие частицы могут служить, например, для защиты против УФ-лучей, придавая новые функции стеклам, пластмассам, краскам, синтетическим волокнам и т.д. Эти частицы также можно использовать для приготовления солнцезащитных кремов, мазей и других препаратов, так как они безопасны для человека и не раздражают кожу (рис. 3).
Способность наночастиц оксида цинка к рассеянию электромагнитных волн может использоваться в тканях одежды для придания ей свойств невидимости в инфракрасном диапазоне за счет поглощения излучаемого человеческим телом тепла. Это позволяет изготавливать камуфляжи, невидимые в широком диапазоне частот – от радио до ультрафиолета. Такая одежда просто незаменима в военных или антитеррористических операциях, поскольку позволяет вплотную подойти к противнику без риска быть замеченным приборами ночного видения.