Курсовая работа: Тахометрические датчики
1. Введение………………………………………………………………………………3
2. Электромагнитные тахометры угловой скорости………………………………….5
2.1 Тахометрический генератор постоянного тока……………………………………5
2.2 Тахометрические генераторы на переменном токе………………………………10
2.3 Электромагнитные тахометры линейной скорости……………………………....13
2.4 Импульсные тахометры угловой скорости………………………………………..14
2.5 Датчики с переменным магнитным сопротивлением…………………………….15
2.6 Датчики на токах Фуко……………………………………………………………..17
2.7 Оптический тахометр……………………………………………………………….17
3. Гирометры…………………………………………………………………………….18
3.1 Гироскопический измеритель скорости…………………………………………...19
3.2 Оптические тахометры ………………………………………………………….….20
4. Заключение……………………………………………………………………………21
5. Приложение…………………………………………………………………………...22
6. Список используемой тературы……………………………………………………..25
Введение
В промышленности измерение скорости сводится в большинстве случаев к измерению скоростей вращения крутящихся деталей и узлов, когда за ними приходится наблюдать в целях безопасности либо для создания условий их работы в желательном режиме. В случае прямолинейного движения измерение скорости часто также может быть сведено к измерению скорости вращения. Поэтому тахометрические датчики являются в своем большинстве датчиками угловой скорости.
Промышленные датчики, предназначенные специально для измерения скорости, базируются на законе Фарадея
где х — переменная линейного или углового положения. Поэтому всякое относительное перемещение между источником потока (индуктором) и контуром наводит в этом последнем э. д. с, амплитуда которой пропорциональна скорости перемещения, вследствие чего на выходе такого датчика формируется сигнал
Этот вид тахометрии называется электродинамическим .
Когда исследуемое движущееся тело осуществляет периодическое движение, например вращение, определение его скорости может быть заменено измерением частоты: так, датчик близости, расположенный рядом с объектом, расстояние до которого изменяется периодически, выдает сигнал, частота которого равна или кратна, в зависимости от конфигурации объекта, частоте движений. Так, для измерения угловой скорости вращающегося вала можно использовать насаженный на него диск, снабженный чередующимися прозрачными и непрозрачными частями, которые при вращении будут прерывать поток лучей, регистрируемый с помощью оптического детектора. Таким образом будет формироваться последовательность электрических импульсов с частотой, пропорциональной скорости.
Тахометры этого типа называют импульсными.
В случае очень медленного вращения, например, менее одного градуса в час, описанные выше методы становятся непригодными, и в этом случае измерение скорости может быть j эффективно осуществлено с помощью лазерного гигрометра.
Принцип его действия основан на существовании разности i хода двух волн, излучаемых одним лазером и распространяющихся в противоположных направлениях в одной и той же вращающейся среде. Эта разность хода, пропорциональная угловой скорости, выявляется с помощью интерферометра.
Отношения, которые связывают скорость и положение, с одной стороны, и скорость и ускорение, с другой, позволяют определять скорость путем обработки сигналов датчиков каждой из этих двух величин.
Производная по времени сигнала аналогового датчика положения определяет величину скорости. Однако этот метод связан с появлением помех (например, из-за дискретности проволочного потенциометра) и увеличением высокочастотного шума.
Интегрирование сигнала датчика ускорения представляет другой метод определения скорости; используемый в навигации, он требует сложного оборудования (инерциальная платформа).
Электромагнитные тахометры угловой скорости
Тахометрический генератор постоянного тока
Устройство. Принцип действия. Элементами устройства генератора являются
а) статор (индуктор), представляющий собой ферромагнитный каркас, который несет 2 полюса, направляющих поле магнитной индукции, образуемое током через катушки (электромагниты) или постоянными магнитами;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--