Курсовая работа: Технология и оборудование сварочных работ
Введение
Сварка — процесс получения неразъёмного соединения посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или пластическом деформировании, или совместном действии того и другого. Обычно применяется для соединения металлов, их сплавов или термопластов, а также в медицине.
Для производства сварки используются различные источники энергии: электрическая дуга, газовое пламя, лазерное излучение, электронный луч, трение, ультразвук. Развитие технологий позволяет в настоящее время осуществлять сварку не только на промышленных предприятиях, но и на открытом воздухе, под водой и даже в космосе. Производство сварочных работ сопряжено с опасностью возгораний, поражений электрическим током, отравлений вредными газами, облучением ультрафиолетовыми лучами и поражением глаз.
ГОСТ 19521-74[2] устанавливает классификацию сварки металлов по основным физическим, техническим и технологическим признакам.
Физические признаки, в зависимости от формы энергии, используемой для образования сварного соединения, подразделяются на три класса:
Термический класс: виды сварки, осуществляемые плавлением с использованием тепловой энергии. Термомеханический класс: виды сварки, осуществляемые с использованием тепловой энергии и давления. Механический класс: виды сварки, осуществляемые с использованием механической энергии и давления. К техническим признакам относятся: способ защиты металла в зоне сварки, непрерывность сварки, степень механизации сварки. Технологические признаки установлены ГОСТ 19521-74 для каждого способа сварки отдельно
Электродуговая сварка
Источником теплоты является электрическая дуга, возникающая между торцом электрода и свариваемым изделием при протекании сварочного тока в результате замыкания внешней цепи электросварочного аппарата. Сопротивление электрической дуги больше, чем сопротивление сварочного электрода и проводов, поэтому бо́льшая часть тепловой энергии электрического тока выделяется именно в плазму электрической дуги. Этот постоянный приток тепловой энергии поддерживает плазму (электрическую дугу) от распада.
Выделяющееся тепло (в том числе за счёт теплового излучения из плазмы) нагревает торец электрода и оплавляет свариваемые поверхности, что приводит к образованию сварочной ванны — объёма жидкого металла. В процессе остывания и кристаллизации сварочной ванны образуется сварное соединение.
Основными разновидностями электродуговой сварки являются: ручная дуговая сварка, сварка неплавящимся электродом, сварка плавящимся электродом, сварка под флюсом, электрошлаковая сварка.
Сварка неплавящимся электродом
В англоязычной литературе известно как en:gas tungsten arc welding (GTA welding, TGAW) или tungsten inert gas welding (TIG welding, TIGW), в немецкоязычной литературе — de:wolfram-inertgasschweißen (WIG).
В качестве электрода используется стержень, изготовленный из графита или вольфрама, температура плавления которых выше температуры, до которой они нагреваются при сварке.
Сварка чаще всего проводится в среде защитного газа (аргон, гелий, азот и их смеси) для защиты шва и электрода от влияния атмосферы, а также для устойчивого горения дуги.
Сварку можно проводить как без, так и с присадочным материалом. В качестве присадочного материала используются металлические прутки, проволока, полосы.
Сварка плавящимся электродом
В англоязычной иностранной литературе именуется как en:gas metal arc welding (GMA welding, GMAW), в немецкоязычной литературе — de:metallschutzgasschweißen (MSG). Разделяют сварку в атмосфере инертного газа (metal inert gas, MIG) и в атмосфере активного газа (metal active gas, MAG).
В качестве электрода используется металлическая проволока, к которой через специальное приспособление (токопроводящий наконечник) подводится ток. Электрическая дуга расплавляет проволоку, и для обеспечения постоянной длины дуги проволока подаётся автоматически механизмом подачи проволоки. Для защиты от атмосферы применяются защитные газы (аргон, гелий, углекислый газ и их смеси), подающиеся из сварочной головки вместе с электродной проволокой. Следует заметить, что углекислый газ является активным газом — при высоких температурах происходит его диссоциация с выделением кислорода. Выделившийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители (такие, как марганец и кремний). Другим следствием влияния кислорода, также связанным с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.
Ручная дуговая сварка
В англоязычной литературе именуется en:shielded metal arc welding (SMA welding, SMAW) или manual metal arc welding (MMA welding, MMAW).
Для сварки используют электрод с нанесённым на его поверхность покрытием (обмазкой).
При плавлении обмазки образуется защитный слой, отделяющий зону сварки от атмосферных газов (азота, кислорода), и способствующий легированию шва, повышению стабильности горения дуги, удалению неметаллических включений из металла шва, формированию шва и т. д. В зависимости от типа электрода и свариваемых материалов электросварка производится постоянным током обеих полярностей или переменным током.
1. Описание сварной конструкции
Траверса она же кран-балка является вспомогательным грузоподъемным приспособлением. Как правило траверсу используют для поднятия длинномерных грузов таких как трубы, стальные и деревянные балки, доски и т.д с помощью подъемного крана. К кранам как правило никаких требований не предъявляется т.к траверса является универсальным приспособлением, однако стоит помнить что при подъеме груза надо учитывать вес не только самого груза, но и траверсы.
С точки зрения механики, использование траверс при подъеме грузов обуславливается тем что она распределяет равномерно вес груза и выравнивает его центр тяжести.Ко всему прочему траверса траверса существенно облегчает процесс крепления и строповки груза.
Классификация траверсы как сварной конструкции следующая: по области применения является грузоподъемной, толстостенной т.к необходим определенный предел прочности при поднятии грузов(толщина зависит от веса груза на который она расчитанна), по материалу изготовления относится к стальным конструкциям т.к стали имеют необходимые физические свойства и относителбную дешевизну перед другими металлами, по способу получения является профильной конструкцией т.к изготавливается из сталепрокатных профилей (выбор профилязависит от веса поднимаемого груза т.к разные профили имеют разный предел прочности), используя классификацию по конструктивной форме траверса является балкой.
траверса 4Т. (4Т. максимально допустимый вес поднимаемого груза) представляет собой горизонтальную балку сваренную из двух швеллеров.Сварной шов идет в местах стыков ребер швеллеров.
С одной стороны траверсы ровно по середине(если нарушить это условие то сместится центр тяжести) приварено стальное ушко изготовленное из металлического прута согнутого в нескольких местах и усиленное в местах сварки металлическими прутками.
С другой стороны по краям распологаются два ушка изготовленные аналогичным способом, и так же усиленные прутками, приваранные перпендикулярно балке.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--