Курсовая работа: Технология производства черной меди на ОАО "Среднеуральский медеплавильный завод"
На скорость растворения кремнезема в фаялитовом расплаве наибольшее влияние оказывает интенсивность движения шлака, крупность частиц флюса и его реакционная способность. В условиях отражательной плавки (при которой наблюдается наименее интенсивное перемешивание по сравнению с другими известными пирометаллургическими процессами) около 50—60 % кварцевого флюса, несмотря на длительное пребывание в расплаве (10—15 ч), не успевает полностью раствориться в шлаке. Мелкие частицы кварца образуют тонкую взвесь, а более крупные плавают на поверхности шлаковой ванны в виде "кварцевой шубы". Эксперименты показывают, что принудительное перемешивание расплава вызывает резкое ускорение процесса растворения тугоплавких составляющих шихты.
Наиболее медленным этапом плавки, даже для современных процессов, у которых время завершения других стадий мало, является коалесценция сульфидных капель и разделение штейна и шлака.
Значительная часть меди находится в шлаках в виде эмульсии — мелких капель штейна. Кроме того, при восстановлении или сульфидировании металлов в шлаковом расплаве обычно образуется дополнительное количество капель металлсодержащей фазы, отстаивание которых происходит крайне медленно и не успевает завершиться за приемлемое с практической точки зрения время. Поэтому необходимо обеспечить принудительное укрупнение штейновых или металлических частиц.
Можно однозначно утверждать, что именно медленное укрупнение мелкой штейновой (металлической) взвеси и ее отделение от шлака являются одним из самых медленных этапов плавки в целом
Наиболее эффективным приемом ускорения коалесценции штейно-вой взвеси является перемешивание шлака с получающимся при плавлении штейном. Известно, что даже загрузка сульфидов на поверхность шлаковой ванны и однократная промывка шпака каплями штейна заметно обедняют шлак.
Сочетание процессов восстановления и перемешивания шлака со штейном позволяет резко интенсифицировать укрупнение штейновых частиц и разделение фаз. Доказано, что крупность частиц при этом возрастает настолько, что для разделения штейна и шлака требуется менее 1 ч вместо 8—12 ч.
Правильная организация процесса разделения фаз создает предпосылки для резкой интенсификации работы плавильных агрегатов и повышения их удельной производительности.
Анализ переработки сульфидного сырья на штейн позволил выявить роль и взаимосвязь последовательных элементарных стадий физико-химических превращений и установить, что оптимизация технологии плавки требует определенного сочетания следующих условий:
1) создание условий для высокой степени использования кислоро
2) да газовой фазы в локальной зоне металлургического реактора, от
3) деленной от конечных продуктов плавления;
4) обеспечение высокой скорости массообменных процессов в сис
5) теме исходные твердые компоненты — конечные расплавы;
3) создание условий для достижения заданного приближения к
равновесию между конечными продуктами плавки;
4} ускорение укрупнения диспергированного штейна или металла и обеспечение полноты разделения продуктов плавки.
Результаты научных разработок позволили сформулировать основной принцип новой технологии: плавление сырья и массообмен осуществляются в турбулентно перемешиваемой ванне эмульсии штейна (металла) в шлаке.
Перемешивание расплава при барботаже его технологическими газами, образующимися при, подаче дутья в расплав через боковые фурмы, обеспечивает требуемую степень турбулизации для ускорения металлургических превращений в зоне расплава выше уровня фурм.
При этом обеспечивается коалесценция мелких штейновых капель и формирование составов фаз, близких к конечным. Расслаивание штейна и шлака организовано в прямоточном потоке вертикально движущихся расплавов. Это обеспечило совмещение в одном агрегате для непрерывного процесса реакционной зоны с высокой степенью турбулентности движения барботируемого расплава и зоны с ламинарным движением расплава, необходимой для организации разделения и отдельного выпуска шлака и штейна (металла).
Научно обоснованная оптимизация организации физико-химических процессов и движения расплава позволила создать новую технологию — плавку в жидкой ванне
Сравнительные технико-экономические показатели
Показатель | ПЖВ | Отражательная плавка |
Удельный проплав, т/(м2 • сут) | 60—80 | 4—5 |
Содержание меди, %: в штейне | 45—55 | 20—30 |
в шлаке (без обеднения) | 0,5—0,6 | 0,4—0,5 |
Содержание Si02 в шлаке, % | 30—32 | 34—42 |
Влажность шихты, % | 6—8 | 6—8 |
Максимальная круп ность шихты, мм | До 50 | 5 |
Пылевынос, % | 1 | 1—2 |
Содержание О2в дутье, % | 60—65 | До 25 |
Содержание SO2 газах, % | 20—40 | 1—2 |
Расход условного топ лива, % | До 2 | 18—22 |
10 Сущность процесса плавки в жидкой ванне
Сущность технологического процесса плавки в жидкой ванне заключается в следующем. Кислородсодержащий газ вводится под избыточным давлением около 0,1 МПа в расплав через фурмы в стенах печи на уровне примерно 0,3—0,7 м ниже уровня расплава в спокойном состоянии внутри шахты печи.
Общая глубина ванны расплава в печи без барботажа 2,0—2,5 м. Кислородсодержащий газ дутья, барботируя верхнюю часть расплава, энергично перемешивает его и создает газонасыщенный слой гетерогенного расплава, состоящего в основном из шлака с включениями до 10 % (вес.) сульфидов в виде капелек штейна и при недостатке тепла — угля или кокса. Высота барботируемого газонасыщенного расплава увеличивается на величину, равную 2—3-х кратному расстоянию от оси фурм до уровня расплава в спокойном состоянии. Кислородсодержащий газ взаимодействует, в первую очередь, с сульфидом железа, серой и углем и генерирует тепло, необходимое для плавления загружаемой шихты и нагрева расплава именно в зоне технологического процесса равномерно во всем верхнем слое.
Благодаря интенсивному перемешиванию капельки сульфидной фазы, образуемые из загруженных частиц сырья, соударяются и сливаются, достигая гидродинамически устойчивого размера 0,5-5 мм, достаточного для выпадения их из верхнего барботируемого слоя и быстрого опускания в донную фазу.
Шихта, состоящая из флотационного концентрата или кусковой руды с флюсом и, если необходимо, с кусковым углем, вводится сверху в барботируемый слой; вследствие высокой энергии перемешивания она равномерно распределяется по всему его объему.
Расплавленные сульфиды шихты вследствие высокой активности серы и железа интенсивно взаимодействуют со шлаком и кислородом дутья, поддерживают низкое содержание магнетита в шлаке. Это способствует получению шлаков, бедных по цветным металлам. В условиях активного перемешивания происходит быстрое растворение кварца и других тугоплавких компонентов шихты, и поэтому во всем объеме расплава постоянно поддерживается оптимальный состав лака, обеспечивающий минимальные потери цветных металлов. Наличие в расплаве пузырьков барботирующего газа способствует быстрой и полной (в соответствии с величиной равновесного давления пара) возгонке летучих компонентов.
Расположение переточного канала для вывода шлака из шахты на 1 м ниже уровня фурм привело к тому, что весь образующийся в верхнем барботируемом слое шлак постепенно движется сверху вниз, проходя свой путь в течение 1,5—3,0 ч. При этом он непрерывно промывается дождем крупных капель штейна, выпадающих из верхнего перемешиваемого слоя. Ниже фурм движущийся поток шлака уже не перемешивается и в нем можно создавать соответствующие градиенты температуры, состава и других параметров, способствующие обеднению шлака. Благодаря такой организации его движения исключена возможность проскока и быстрого выхода из печи непроработанного шлака с повышенным содержанием цветных металлов. Сульфидная донная фаза, образующаяся на дне печи из опускающихся капель, отдельно от шлака выводится из плавильного агрегата.
11 Процессы, протекающие в надфурменнои и подфурменной зонах печи для плавки в жидкой ванне
В надфурменной зоне происходитплавление, окисление сульфидов, растворение
тугоплавких компонентов, укрупнение мелких сульфидных частиц.
При этом все процессы проходят одновременно и с высокой скоростью. Высокая скорость обеспечивается интенсивным перемешиванием расплава. Отсутствие диффузионных ограничений.