Курсовая работа: Теорема Нётер

(6)

т.е. образующих однопараметрическую группу. Рассмотрим бесконечно малое преобразование, отвечающее параметру .

Тогда

(7)

Собственно вариации обобщенных координат, происходящие при рассматриваемом преобразовании, – это разность значений новых координат в некоторый момент нового времени и значений старых координат в соответствующий момент старого времени, т.е.

. (8)

Наряду с ними удобно ввести в рассмотрение вариации формы

(9)

зависимости координат от времени, которые отличны от нуля, даже если наше преобразование затрагивает только время, а не координаты.

Для любой функции справедливо соотношение:

.

Тогда между двумя введенными видами вариаций есть соотношение, которое можно получить следующим образом: вычтем из (8) уравнение (9), получим:

,

примем во внимание, что

,

тогда имеем:

(10)

Вариации без звездочек, относящиеся к одному значению аргумента, перестановочны с дифференцированием по времени

,

в то время, как для вариаций со звездочками это, вообще говоря, неверно.

Соответствующие два вида вариаций можно ввести и для любой динамической переменной. Например, для функции Лагранжа

(11)

причем

(12)

где включает дифференцирование как по явно входящему времени, так и по времени, входящему неявно, через координаты и скорости.

Потребуем теперь, чтобы интеграл действия не менялся бы при нашем преобразовании, – это и есть тот исключительный случай, который требуется условием теоремы, – т.е. чтобы было

, (13)

где Т' – та же область интегрирования, что и Т во втором интеграле, но выраженная через новые переменные. Тогда подставив (11) в (13), получим

(14)

Выражаем в (15) через (11) и учитывая соотношение

,

переходя к интегрированию по t вместо t' , получим:

К-во Просмотров: 408
Бесплатно скачать Курсовая работа: Теорема Нётер