Курсовая работа: Теорема Нётер
(6)
т.е. образующих однопараметрическую группу. Рассмотрим бесконечно малое преобразование, отвечающее параметру .
Тогда
(7)
Собственно вариации обобщенных координат, происходящие при рассматриваемом преобразовании, – это разность значений новых координат в некоторый момент нового времени и значений старых координат в соответствующий момент старого времени, т.е.
. (8)
Наряду с ними удобно ввести в рассмотрение вариации формы
(9)
зависимости координат от времени, которые отличны от нуля, даже если наше преобразование затрагивает только время, а не координаты.
Для любой функции справедливо соотношение:
.
Тогда между двумя введенными видами вариаций есть соотношение, которое можно получить следующим образом: вычтем из (8) уравнение (9), получим:
,
примем во внимание, что
,
тогда имеем:
(10)
Вариации без звездочек, относящиеся к одному значению аргумента, перестановочны с дифференцированием по времени
,
в то время, как для вариаций со звездочками это, вообще говоря, неверно.
Соответствующие два вида вариаций можно ввести и для любой динамической переменной. Например, для функции Лагранжа
(11)
причем
(12)
где включает дифференцирование как по явно входящему времени, так и по времени, входящему неявно, через координаты и скорости.
Потребуем теперь, чтобы интеграл действия не менялся бы при нашем преобразовании, – это и есть тот исключительный случай, который требуется условием теоремы, – т.е. чтобы было
, (13)
где Т' – та же область интегрирования, что и Т во втором интеграле, но выраженная через новые переменные. Тогда подставив (11) в (13), получим
(14)
Выражаем в (15) через (11) и учитывая соотношение
,
переходя к интегрированию по t вместо t' , получим: