Курсовая работа: Теоретические основы построения модуляторов и демодуляторов

При условиях и , легко выполнимых на практике, выражение (27) упрощается

. (28)

Погрешность, допускаемую при данных ограничениях, оценим на основании сравнения соотношений (27) и (28)

. (29)

Если предположить, что в рабочем диапазоне частот усилитель не будет иметь фазового сдвига (), то выражение (29) упрощается

. (30)

При неограниченном уменьшении входной проводимости усилителя по сравнению с проводимостью колебательного контура () погрешность (30) реализации отрицательной активной проводимости

(31)

и схема (см. рис.9) позволяет получить высокую линейность компенсации проводимостей резонансного контура в широком диапазоне изменения его активной составляющей, связанной как с перестройкой по частоте (15), так и с изменением основных параметров (L,C).

При использовании управляемой проводимости (8.260) в виде емкости () реализуемая отрицательная активная составляющая проводимости по аналогии с (28)

. (32)

Для реализации схемой (см. рис.9) отрицательной проводимости необходимо в (32) обеспечить .

Проведенный анализ для случая показал, что схема, представленная на рис. 9, ведет себя так же, как и при (32). Однако при реализации этого варианта в интегральном исполнении имеются трудности, связанные с проблемой индуктивности в микроэлектронике [1].

3. Прецизионный амплитудный модулятор

Совмещение функций генерирования и модуляции по амплитуде или частоте колебаний в автогенераторе нецелесообразно, так как это приводит к неконтролируемому повышению нестабильности частоты, которую стремятся уменьшать всевозможными средствами, включая термостатирование автогенератора. В связи с этим данные операции разделяют, оставляя функцию генерирования колебаний в автогенераторе, а функцию модуляции колебаний осуществляют с помощью отдельных амплитудных или частотных модуляторов, что определяет необходимость совершенствования их схемотехники.

Построение амплитудных модуляторов, работающих на относительно низких и средних частотах c использованием ПТ и ОУ, а также перемножителей сигналов, рассмотрено в работах [1,3].

Широкополосный амплитудный модулятор, способный работать на высоких (сотни мегагерц) частотах, может быть реализован на основе схемы ШУН (рис. 10) с симметричным выходом и управлением высокочастотного (несущего) сигнала путем изменения тока ГСТ под влиянием низкочастотного (модулирующего) сигнала , так как коэффициент передачи ДУ линейно связан с величиной этого тока.

Для изменяющегося во времени тока ГСТ амплитудного модулятора, представленного на рис.10, в котором модулирующий сигнал подается в его токозадающую цепь через повторитель сигнала на ОУ1, можно записать:

, (33)

где , и - напряжение питания отрицательной полярности, напряжение база-эмиттер БТ Т3 и постоянная составляющая тока ГСТ

. (34)

Выходное симметричное напряжение модулятора с учетом (33)

, (35)

где - изменяющаяся во времени t крутизна БТ дифференциальной пары Т1, Т2.


Рис. 10. Прецизионный амплитудный модулятор

При входных синусоидальных сигналах

, (36)

, (37)

где , и , - амплитуды и частоты соответственно несущего и модулирующего сигналов,

К-во Просмотров: 508
Бесплатно скачать Курсовая работа: Теоретические основы построения модуляторов и демодуляторов