Курсовая работа: Теория вероятностей. От Паскаля до Колмогорова
Работа Гюйгенса состоит из небольшого введения и 14 предложений. Эти предложения весьма различны по своему содержанию. Первые три являются теми принципами, на основе которых Гюйгенс основывал последующие решения.
Предложение 1. Если я имею равные шансы получить или , то это мне стоит .
Предложение 2. Если я имею равные шансы получить или , то это мне стоит столько же, как если бы я имел .
Предложение 3. Если число случаев, в которых получается сумма , равно , а число случаев, в которых получается сумма , равно , то стоимость моего ожидания равна .
Ясно, что этими предложениями Гюйгенс ввел понятие математического ожидания для случайной величины, принимающей два или три значения. В первых двух предложениях значения, принимаемые случайными величинами, равновероятны, а в третьем предложении вероятность значения равна и вероятность значения равна . Понятие вероятности у Гюйгенса еще не выделено, и он все время оперирует числами шансов, благоприятствующих тому или другому событию. Гюйгенс говорил о стоимости, за которую он готов уступить свое право на получение выигрыша. Термин «ожидание» был введен в употребление Схоутеном при переводе.
Предложения 1 и 2 представляют собой ничто иное, как версию задачи о разделе ставки.
«Предположим, что я играю против другого лица на то, кто первым выиграет 3 партии, и что я уже выиграл 2 партии, а он 1. Я хочу знать, какая часть ставки причитается мне, когда мы хотим прервать игру и справедливо разделить ставки… Нужно заметить сначала, что достаточно принять во внимание число партий недостающих той и другой стороне. Так как верно, что если бы мы играли на то, кто выиграет 20 партий, и если бы я выиграл 19 партий, а мой противник 18, то я имел бы такое же самое преимущество, как и в изложенном случае, где при трех партиях я выиграл две, а он только одну, а это потому, что в обоих случаях мне недостает только одной партии, а ему двух. Затем, чтобы вычислить часть, причитающуюся каждому из нас, нужно обратить внимание на то, что произошло бы, если бы мы продолжали игру. Верно и то, что выиграв партию, я получил бы полностью сумму ставки, которую обозначу . Но если первую партию выиграет мой противник, то наши шансы станут равными, принимаю во внимание, что каждому из нас будет недоставать по одной партии; значит, каждый из нас имел бы право на , что согласно первому предложению, эквивалентно сумме половин, т.е. , так что моему сопернику остается ».
Предложения 4–9 работы Гюйгенса посвящены решению задач, связанных с безобидным делением ставки. Например, в предложении 8 рассмотрено деление ставки между тремя игроками, когда первому игроку недостает до выигрыша всей игры одной партии, а второму и третьему по две. Предложения 10–14 содержат различные задачи, связанные с бросанием костей. В конце работы помещены 5 задач без решений, которые Гюйгенс предложил читателю для самостоятельных размышлений.
К концу 17 века завершался длительный период накопления первичных сведений о случайных событиях, точно поставленных задач и подходов к их решению. Многие выдающиеся умы занимались этими вопросами и с разных позиций подходили к количественной оценки возможности наступления случайного события. Ферма фактически пользовался понятием математического ожидания, использование которого для решения разнообразных задач было широко развито Гюйгенсом ; Паскаль, Ферма и Гюйгенс использовали представления о теоремах сложения и умножения вероятностей, и подошли вплотную к понятию вероятности, однако его они не ввели. Если бы исследователи того времени задали себе вопрос, что возможнее при четырехкратном бросании кости хотя бы раз выбросить шестерку или при двадцатипятикратном бросании двух костей хотя бы раз выбросить на обеих костях шестерки, они были бы вынуждены ввести классическое понятие вероятности и далее его использовать. Однако этого в 17 веке не произошло и введение в науку классического понятия вероятностей принадлежит лишь 18 столетию. Период предыстории завершался и начинался период истории теории вероятностей. Для этого уже был создан достаточно прочный фундамент.
5. Первые исследования по демографии
Одним из толчков для развития основных понятий теории вероятностей сыграли исследования Джона Граунта (1620–1675) и Вильяма Петти (1623–1687) по демографии. Их работы наглядно продемонстрировали, каким мощным орудием могут служить для изучения массовых явлений статистические наблюдения, если их соответствующим образом обработать. Первой работой, с которой начинается история статистики как области научного знания, следует назвать книгу Граунта , опубликованную в 1662 г. под названием «Естественные и политические наблюдения, перечисленные в прилагаемом оглавлении и сделанные над бюллетенями смертности. По отношению к управлению, религии, торговле, росту, воздуху, болезням и разным изменениям означенного города».
Основная задача, которая интересовала Граунта , состояла в указании метода, который позволял бы установить с достаточной точностью возрастной состав населения города в результате наблюдений за возрастом умерших. С этой целью им были проанализированы 229 250 регистраций смертей в Лондоне происшедших за 20 лет. Среди этих смертей было отмечено 71 124 смерти детей от 0 до 6 лет. Причины смертей были тщательно перечислены Граунтом. Он специально отметил, что отношение числа смертей детей от 0 до 6 лет к общему числу смертей за тот же период времени, равное 71 124/229 250, приблизительно равняется 1/3. Иными словами, Граунт ввел представление о частоте события. Для развития теории вероятностей это обстоятельство сыграло огромную роль, как и его замечание: «…мы бы хотели отметить, что некоторые из случайностей имеют постоянное отношение к числу всех похорон». Здесь Граунт вплотную подошел к представлению о статистической устойчивости средних. Им была составлена первая таблица смертности.
Граунт прекрасно понимал, что точность его выводов тем больше, чем больше наблюдений имеется для обработки. Именно в связи с этим он отметил, что недостаточно ограничиваться обработкой бюллетеней смертности только за одну неделю для получения полноценных выводов о составе населения.
Понятие частоты подхватили другие авторы. Так в небольшой книге В. Петти «Два очерка по политической арифметике, относящиеся к людям, зданиям, больницам в Лондоне, Париже», вышедшей в 1682 г. в Лондоне, а через два года во французском переводе в Париже, были даны сравнительные данные о смертности в госпиталях шарите Парижа и Лондона.
Работы Граунта , Петти и ряда их последователей представляют собой ничто иное, как первые шаги в области математической статистики.
Непосредственным продолжателем исследований, начатых Граунтом и Петти , был знаменитый английский астроном Эдмунт Галлей (1656–1742). В 1693 г. Галлей опубликовал в изданиях Лондонского королевского общества две статьи «Оценка степеней смертности человечества, выведенная на основании любопытных таблиц рождений и погребений города Бреславля, с попыткой установить цену пожизненных рент» и «Несколько дальнейших замечаний по поводу Бреславльских бюллетеней смертности». Одна из причин интереса Галлея к таблицам смертности состоит в том, что сами Граунт и Петти сознавали недостаточную обоснованность своих выводов, поскольку у них отсутствовали численность населения и возраст умерших. Кроме того, в городах, которые они изучали, был большой приток населения извне. Это обстоятельство делает указанные города «неподходящими в качестве стандарта для этой цели, которая требует, если это возможно, чтобы население, с которым имеют дело, было совершенно закрытым, т.е. таким, где все умирают там, где они родились, где нет никаких эмигрантов и иммигрантов. По словам Галлея , бреславльские материалы не имеют указанных дефектов.
На основании имевшихся у него данных Галлей составил таблицу смертности, которую он рассматривал одновременно и как таблицу доживающих по возрасту лиц, так и как распределение населения по возрасту. Он ввел в науку понятие о вероятной продолжительности жизни, как о возрасте, которого одинаково можно достигнуть и не достигнуть. На современном языке это медиана длительности жизни. В вычислениях Галлея можно заметить использование им принципов, лежащих в основе теорем сложения т умножения вероятностей, а также рассуждения, близкие к формулировке закона больших чисел.
Работы Галлея имели очень большое значение для развития науки и применений статистических исследований о народонаселении к вопросам страхования.
6. Возникновение классического определения вероятности
До конца 17 в. наука так и не подошла к введению классического определения вероятности. Однако в 30-х годах 18-го столетия классическое определение вероятности стало общеупотребительным, и никто из ученых этих лет не мог бы ограничиться только подсчетом числа благоприятствующих событию шансов. Введение классического определения вероятности произошло не в результате однократного действия, а заняло длительный промежуток времени, на протяжении которого происходило непрерывное совершенствование формулировки, переход от частных задач к общему случаю. Еще в книге Гюйгенса «О расчетах в азартных играх» (1657) нет понятия вероятности как числа, заключенного между 0 и 1 и равного отношению числа благоприятствующих событию шансов к числу всех возможных. А в трактате Я. Бернулли «Искусство предположений» (1713) понятие это введено, хотя и в несовершенной форме. Что же заставило Бернулли ввести в научный обиход классическое понятие вероятности?
Несомненно, что формулировка закона больших чисел, осуществленная Бернулли , сама по себе является достаточным для этого основанием. Однако сильное влияние на ход мыслей ряда исследователей, в том числе и Бернулли , оказали работы Граунта и Петти . Их произведения убедительно показали преимущества понятие частоты перед понятием численности. Понятие частоты, т.е. отношение числа наблюдений, в которых появляется определенное свойство, к числу всех наблюдений, позволяет получить серьезные практические выводы. Отсюда оставался один шаг до введения классического определения вероятности. Выводы Граунта и Петти относительно устойчивости некоторых событий подготовили почву и к формулировке закона больших чисел.
Бернулли дал такое определение вероятности: «Вероятность есть степень достоверности и отличается от нее, как часть от целого». Далее было пояснение сказанного на примере, который показывает, что Бернулли в данную им формулировку вкладывал тот же смысл, какой мы вкладываем в классическое определение вероятности.
Интересны другие рассуждения его работы. Бернулли задал вопрос: как определить вероятность случайного события, если у нас нет возможности подсчитать числа всех возможных и благоприятствующих ему шансов? Ответ был им сформулирован следующим образом: «Но здесь нам открывается другая дорога для достижения искомого. И то, что не дано вывести apriori, то, по крайней мере, можно получить aposteriori, т.е. из многократного наблюдения результатов в подобных примерах… Ибо, если, например, при наблюдениях, сделанных некогда над тремя сотнями людей того же возраста и сложения, в каких находится теперь Тит, было замечено, что из них двести до истечения 10 лет умерли, а остальные остались в живых и дальше, то можно заключить с достаточным основанием, что имеется вдвое больше случаев Титу умереть в течение ближайшего десятилетия, чем остаться в живых по истечении этого срока… Этот опытный способ определения числа случаев по наблюдениям не нов и не необычен».
Важно подчеркнуть, что в высказанных отрывках достаточно четко прослеживается мысль о статистическом определении вероятности. Таким образом, в трактате Бернулли присутствуют обе концепции вероятности классическая и статистическая. Обе они изложены не очень четко, но они уже введены в рассмотрение и использованы. Введено в рассмотрение понятие вероятности случайного события, как числа, заключенного между 0 и 1. Достоверному событию приписывается максимально возможное значение вероятности единица, а невозможному минимальное ноль. Кроме того, было ясно сказано, что это число может быть определено двумя различными способами: путем подсчета числа равновозможных случаев, которые благоприятствуют событию, и всех возможных случаев и вычисления их отношения или же путем проведения большого числа независимых испытаний и вычисления частоты события.
Монмор в своей книге «Обзор анализа азартных игр» использовал введенное Бернулли понятие вероятности и применил его к решению достаточно сложных задач. В частности Монмор рассмотрел и правильно решил следующую задачу: имеется предметов, пронумерованных числами от 1 до . Спрашивается, чему равна вероятность того, что при последовательном вынимании этих предметов наудачу (без возвращения) хотя бы один предмет будет вынут так, что номер вынимания совпадет с присвоенным ему номером. Эта вероятность оказалась равной .
А. Муавр принял классическое определение вероятности, данное Бернулли , и вероятность события определил в точности так, как это делаем мы теперь. Он писал: «Следовательно, мы строим дробь, числитель которой будет число случаев появления события, а знаменатель число всех случаев, при которых оно может появиться или не появиться, такая дробь будет выражать действительную вероятность его появления». Муавр , как и Бернулли не заострял внимание на то, что шансы должны быть равновероятными. Это замечание впервые было введено в определение классической вероятности лишь П. Лапласом в его «Аналитической теории вероятностей». Лагранж об этом еще не задумывался и давал определение вероятности в точности по Муавру . По-видимому, на Лапласа повлияла дискуссия, начатая Д`Аламбером , который при решении задачи о вероятности выпадения (при бросании двух монет) герба на одной из монет и решки на другой, определил ее равной 1/3. Это он мотивировал тем, что имеется лишь три возможности:
1) на обеих монетах выпадает герб;
2) на обеих монетах выпадает решка;
3) на одной монете выпадает герб, а на другой решка.