Курсовая работа: Теория вероятности и математическая статистика

II способ:

Из математического моделирования с помощью TurboPascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события .

Распределение модуля случайной величины, распределенной по нормальному закону

Пусть СВ Y подчиняется закону нормального распределения. Пусть по тем или иным причинам представляет интерес величина отклонения Y от нуля независимо от знака этого отклонения, т. е. СВ

X=|Y|

которая образует распределение модуля СВ, подчиненной нормальному закону.

Математическое выражение. Распределение модуля СВ определяется теми же двумя параметрами, которые характеризуют исходное нормальное распределение.

Плотность вероятности равна

где x0 , σн — математическое ожидание и среднее квадратическое отклонение исходного нормального распределения;

φ(t) — функция, определяемая равенством (5.12).


Функция распределения равна

где Ф0 (t) — функция, определяемая равенством (5.19).

График плотности вероятности приведен на рис. 5.2.

Математическое ожидание, дисперсия и среднее квадратическое отклонение СВ Х определяются равенствами:


Вид распределения модуля случайной величины, распределенной по нормальному закону, зависит от соотношения между x0 и σн (рис. 5.2).

Для определения медианы нужно решить уравнение

а для определения моды — уравнение

Второе уравнение при x0 > σн , а первое при любых x0 и σн решаются численными или графическими методами. При x0н мода равна нулю.

Формулы (5.33) и (5.34) можно выразить через срединное отклонение Ен исходного нормального распределения, заменив в них σн на Ен , φ(t) на φ^ (t), Ф0 (t) на Ф^ 0 (t). Функции φ^ (t) и Ф^ 0 (t) определяются равенствами (5.13) и (5.21).

Вычисление: Расчеты по формулам (5.33) — (5.37) производятся с помощью табл. II и III. Если расчетчик предпочитает выражение исходного нормального распределения через срединное отклонение, то используются табл. IV и V.

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Программав Turbo Pascal:

PROGRAM Kursov_2;

Uses Graph,Crt;

Var mi:array[1..100] of integer;

hi,pix,hn,hr,xi:array[1..200] of real;

m,i,l,j,n,a,b:integer;

mx,Dx,Gx,Sk,Ex,fx,xl,Dxs,Gxs,Sks,Exs:real;

xmin,xmax,pod,c,c1,c2,x,v:real;

st:string;

К-во Просмотров: 445
Бесплатно скачать Курсовая работа: Теория вероятности и математическая статистика