Курсовая работа: Теория вероятности

n=1700 M=1471 P*=0.87

n=1800 M=1581 P*=0.88

n=1900 M=1670 P*=0.88

n=2000 M=1768 P*=0.88

Вер. в опыте: p= 0.88

Проверка вручную:

Первый способ:

Второй способ:

Вывод: Теорема Бернулли верна.

Задание 2

Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.

Теория:

Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:

1. Случайный выбор интервала (определение значения aj )

2. Случайный выбор «b» из этого интервала

3. Формирование случайного числа в соответствии с формулой

При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)

Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.

Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).

Решение:

Построим график плотности распределения по закону Коши ():

Рис.2. График распределения Коши.

Необходимо разбить интервал от –20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1 ,aj ], так чтобы a1 =0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». Для выполнения этих действий составим программу в среде TurboPascal 7.1.

Программа позволяющая смоделировать СВ, имеющую закон распределения Коши:

Program tvmslab2;

К-во Просмотров: 367
Бесплатно скачать Курсовая работа: Теория вероятности