Курсовая работа: Теория вероятности
n=1700 M=1471 P*=0.87
n=1800 M=1581 P*=0.88
n=1900 M=1670 P*=0.88
n=2000 M=1768 P*=0.88
Вер. в опыте: p= 0.88
Проверка вручную:
Первый способ:
Второй способ:
Вывод: Теорема Бернулли верна.
Задание 2
Методом кусочной аппроксимации смоделировать случайную величину, имеющую закон распределения Коши, заполнить массив из 300 точек.
Теория:
Метод кусочной аппроксимации заключается в том, что для формирования одного случайного числа из последовательности с заданным законом распределения необходимо дважды использовать датчик случайных чисел. Процедура получения случайного числа yi сводиться к:
1. Случайный выбор интервала (определение значения aj )
2. Случайный выбор «b» из этого интервала
3. Формирование случайного числа в соответствии с формулой
При выборе интервала на первом шаге процедуры должна учитываться плотность распределения. С этой целью ее кусочно-линейно аппроксимируют отрезками прямых, параллельных оси абсцисс (рис.1.)
Рис.1. Кусочно-линейно аппроксимированный график плотности распределения по закону Коши.
Количество интервалов разбиения области определения случайной величины обычно выбирается достаточно большим (именно поэтому в данной Курсовой работе было использовано разбиение на 400 интервалов).
Решение:
Построим график плотности распределения по закону Коши ():
Рис.2. График распределения Коши.
Необходимо разбить интервал от –20 до 20 на n подинтервалов (в данном случае n=40) и вычислить вероятность попадания на каждый из этих подинтервалов. После этого составить массив [a1 ,aj ], так чтобы a1 =0, a , случайно сгенерировать значение числа «b» из промежутка от 0 до 1, найти номер интервала в который она попадет и второй раз используя датчик случайных чисел сгенерировать случайную добавку «b». Для выполнения этих действий составим программу в среде TurboPascal 7.1.
Программа позволяющая смоделировать СВ, имеющую закон распределения Коши:
Program tvmslab2;