Курсовая работа: Тепловое расширение тел

3 фізичної точки зору вони не дають можливості чітко розмежувати твердий і рідкий стани речовини. За цими
ознаками, наприклад, аморфні речовини є твердими тілами, а за внутрішньою будовою вони – рідини.

Властивості твердих тіл на основі молекулярно-кінетичної теорії пояснюють після розгляду процесу тверднення рідини. Учні вже знають, що газ перетворюється в рідину тоді, коли внаслідок зближення молекул густина речовини зростає приблизно в 1000 раз, а відстані між молекулами зменшуються в 10 разів. Відповідно до цього в багато тисяч раз зростають сили взаємодії між молекулами. Тут логічним є припущення, що при твердненні молекули зближуються ще більше, а сили взаємодії зростають ще значніше. Однак досліди показують, що густина речовини в твердому стані дуже мало відрізняється від густини тієї самої речовини в рідкому стані. Більше того, буває й так, що густина в твердому стані менша, ніж у рідкому. Наприклад, густина води дорівнює 1000 кг/м3 , тоді як льоду - порядку 920 кг/м3 . Звідси випливає, що в твердому тілі середні відстані між молекулами майже такі самі, атому й сили взаємодії між ними однакові.

Сили взаємодії кожної молекули з сусідніми дуже великі, внаслідок чого молекули рідини коливаються навколо деяких середніх положень стійкої рівноваги. Практично молекули рідини через дуже малі проміжки часу (близько однієї стомільйонної частки секунди) стрибком переміщуються в просторі, що обумовлює текучість рідин. Отже, рідина складається з безлічі мікроскопічних областей, для яких характерним є певний порядок у розміщенні сусідніх молекул. Цей порядок змінюється з часом і в просторі, тобто не повторюється в усьому об'ємі рідини. Про таку структуру кажуть, що вона має близький порядок.

Однак, якщо істотно знизити температуру рідини і тим самим зменшити кінетичну енергію її молекул, то вони вже не зможуть виходити з положень стійкої рівноваги, а розмістяться в них. Саме це й відбуватиметься при твердненні рідини.

Щоб усі молекули були в стані стійкої рівноваги, треба, щоб кожна з них була розміщена однаково відносно інших молекул. Це означає, що біля кожної молекули має бути та сама кількість однаково розміщених молекул. На мал. 1, а кожна молекула (наприклад, молекула 0) має чотирьох найближчих сусідів (1, 2, 3 і 4), а на мал. 1, б – шістьох найближчих сусідів.

Учні приходять до висновку, що в твердому тілі частинки розміщуються в певному порядку, тоді як у рідині і газі такого порядку немає. Під час тверднення рідини частинки стрибкоподібно переходять від хаотичного до впорядкованого розміщення. Процес супроводиться зменшенням потенціальної енергії взаємодії частинок: адже кожна з них переходить у положення, де потенціальна енергія мінімальна.

Мал. 1. Розташування молекул в речовині.

Залишити ці місця вони можуть тільки тоді, коли зовнішня сила виконає певну роботу. Саме тому тверді тіла й зберігають свою форму.

Далі пояснюють, що правильно розміщені частинки твердого тіла (молекули, іони, атоми) утворюють кристалічну (просторову) решітку. Точки в кристалічній решітці, які відповідають стійкому положенню рівноваги частинок, називають вузлами решітки. Важливо показати, що правильне розміщення вузлів решітки всередині кристала періодично повторюється. Це означає, що коли на якійсь прямій відстань між найближчими вузлами дорівнює а (мал. 2), то на відстані па від першого вузла на цій самій прямій у кристалічній решітці лежить такий самий п -й вузол. Правильне розміщення частинок у вузлах решітки кристала називають далеким порядком.

Мал. 2.

Учні повинні зрозуміти, що головною ознакою твердого тіла є його кристалічна структура, або, інакше кажучи, у твердого тіла обов'язково повинен бути дальній порядок розміщення частинок.

При викладанні будови кристалів потрібно пояснити характеру руху молекул у твердих тілах. Той факт, що в твердому тілі кожна частинка розміщена в певному місці – у вузлі кристалічної решітки, - не означає, що частинки в твердих тілах нерухомі. Частинки в твердому тілі також хаотично рухаються, а середня їх кінетична енергія визначає температуру тіла. Однак теплові рухи частинок твердого тіла не такі вільні, як у газах чи навіть у рідинах. У твердому тілі частинки здійснюють малі порівняно з відстанями між ними хаотичні коливання в усіх можливих площинах навколо вузлів кристалічної решітки. З підвищенням температури амплітуда цих коливань зростає.

За певних умов утворення кристалів упорядковане розміщення частинок веде до того, що зовнішня форма кристала буде правильною: кристал має форму багатогранника, обмеженого гладенькими плоскими гранями. Таку форму мають багато природних кристалів. Доцільно роздати учням зразки різних кристалів і запропонувати розглянути їх крізь лупу. Зразки кристалів можна отримати у шкільному кабінеті хімії та географії або ж виростити самотужки. Можна виростити кристали кухонної солі, гіпсу сульфату міді. Слід підкреслити, що в кристалів кожної речовини кути між гранями завжди мають цілком певне значення. Вимірявши ці кути в одного кристала, ми тим самим знатимемо, що всі інші кристали цієї ж речовини мають такі самі кути, хоч кристали можуть мати різний зовнішній вигляд.

Далі вводять поняття про монокристал і полікристалічну будову твердих тіл. Приклади монокристалів: гір­ський кришталь, алмаз, рубін, топаз, гранат. Приклади полікристалів: усі метали й сплави, більшість природних кристалічних тіл. Бажано, щоб учні розглянули крізь лупу полікристалічну структуру металу на свіжому зламі цинкової пластинки.

Треба підкреслити, що сучасна техніка ставить дуже високі вимоги до чистоти кристалів, якої природа не може забезпечити. Для цього кристали вирощують в умовах повної герметичності, старанно оберігають їх від пилинок і вологи, найменших коливань температури. Інакше порушиться чітка схема розміщення атомів у кристалічній решітці. Кристали «зріють» у герметичних скляних ємкостях, заповнених розчином тієї чи іншої хімічної сполуки. Вода поступово випаровується, розчин перенасичується і молекули майбутнього кристала осідають на тоненьку пластинку.

На основі дослідження процесів утворення кристалів опрацьовано методи вирощування великих монокриста­лів, які дають можливість у лабораторних або промислових умовах діставати зразки з лінійними розмірами в десятки сантиметрів. У світі налагоджено виробництво штучних алмазів, рубінів, ізумрудів, сапфірів, аметистів, кварцу тощо. В Україні цим займається Інститут кристалохімії НАН України. Штучно вирощені алмази твердіші від природних; їх успішно застосовують у промисловості. Синтезовано також такі надтверді кристали, як боразон (кубічний нітрид бору), кубоніт, фіаніт тощо, які іноді використовуються у якості дорогоцінних у ювелірній промисловості.

Найхарактернішою особливістю монокристалів є анізотропія властивостей – їх залежність від певного напряму. На уроці слід продемонструвати хоча б один з випадків анізотропії, зокрема анізотропію міцності, оскільки вона притаманна майже всім кристалам. Розколюючи досить великі кубічні кристали кухонної солі, дістають дрібні осколки переважно у вигляді прямокутних паралелепіпедів. Це означає, що в напрямах, паралельних граням, міцність кристала кухонної солі значно нижча, ніж у діагональних та інших напрямах. Слюду легко розщепити на пластинки, але важко розірвати окремі пластинки в напрямі, перпендикулярному до пластинки. Це також свідчить про неоднакову міцність слюди в різних напрямах. Бажано, щоб ці досліди зміг виконати кожний учень на своєму робочому столі. На підставі дослідів роблять висновок, що в різних напрямах міцність кристалів неоднакова. Це прояв анізотропії механічних властивостей кристала.

Анізотропію теплопровідності ілюструють плавленням парафіну або воску, нанесених на поверхню пластинки, вирізаної з кристала кварцу або гіпсу. Якщо торкнутись гарячою голкою до кварцової або гіпсової пластинок, то поверхня, на якій плавиться парафін, матиме вигляд овала, а скляної – вигляд круга.

Особливо цікавою є анізотропія росту кристалів. Якщо взяти досить великий кристал, наприклад кристал галуна, спиляти його вершини, а потім, обв'язавши кристал ниткою, відзначити вузликами попередні положення вершин і помістити в перенасичений розчин галуна, то побачимо, що кристал відновить свою попередню форму: на місцях спиляних вершин утворяться нові вершини. Отже, кристал росте неоднаково в різних напрямах.

Пояснюють, що анізотропія властивостей – наслідок упорядкованого розміщення частинок у кристалах. Анізотропія буває лише в монокристалів. Більшість твердих тіл – полікристали. Кожному монокристалику, що входить до складу полікристала, властива анізотропія тих чи інших властивостей. Але оскільки всі вони зрослися в повному безпорядку, то в полікристалах переважаючого напряму немає. Тому полікристалічні тіла ізотропні, тобто їхні властивості однакові в усіх напрямах, хоч кожний окремий кристалик – анізотропний. Те, що полікристали складаються з безлічі зерен – кристаликів, слід показати на зламі цинкової пластинки.

Серед тіл, які зберігають свій об'єм (як рідини) і форму, є й такі, що перебувають не в кристалічному, а в аморфному стані. Скло, клей, віск, парафін, пластилін, асфальт, різні смоли, янтар, багато пластмас – приклади речовин в аморфному стані. Під зовнішнім впливом аморфні тіла проявляють одночасно пружні властивості (як тверді тіла) і текучість (як рідини). У випадку короткочасної дії (удару) вони поводять­ся як тверді тіла і від сильного удару розколюються на частини. Якщо ця дія тривала, то аморфні тіла «течуть».

Так, наприклад, грудка смоли поступово розтікається на твердій поверхні. Аморфні тіла ізотропні, тобто їхні властивості однакові в усіх напрямах.

Аморфні тіла не мають певних температур плавлен­ня і тверднення. З твердого стану в рідкий вони переходять, поступово розм'якшуючись, а з рідкого в твердий, - поступово тужавіючи. Для аморфних тіл немає такої температури, вище від якої речовина була б у рідкому стані, а нижче – в твердому.

Звертають увагу учнів, що в аморфних тілах розміщення частинок має близький порядок. Частинки аморфних тіл у твердому стані розміщені так само хаотично, як і в рідкому. Рідина й аморфне тіло відрізняються одне від одного лише ступенем рухливості частинок - часом їхнього «осілого життя». Під час тверднення аморфної речовини кінетична енергія хаотичних рухів частинок поступово зменшується, але їхня потенціальна енергія стрибкоподібно не зменшується. Внутрішня енергія речовини в аморфному стані трохи більша, ніж у кристалічному, бо впорядкованому розміщенню середніх положень частинок у положеннях рівноваги відповідає найменша потенціальна енергія частинок. Тому можливий самовільний перехід речовини з аморфного стану в кристалічний.

Учні мають бути підведені до розуміння того, що частинки аморфних тіл у твердому стані коливаються, аналогічно частинкам у рідинах, навколо хаотично розміщених вузлів. Однак частинки аморфного тіла з одного положення рівноваги в інше переміщаються через такі великі проміжки часу, що практично аморфні тіла є твердими тілами.

Після цього можна пояснити різницю в характері плавлення кристалічних і аморфних речовий. Для перетворення речовини з твердого кристалічного стану в рідкий необхідно зруйнувати впорядкованість у розміщенні частинок тіла. Для цього має бути витрачена енергія, яку тіло дістає у вигляді так званої теплоти плавлення. При температурі плавлення за рахунок цієї енергії змінюється характер хаотичного руху частинок кристалічного тіла. Частішають їх стрибки з одного положення рівноваги в інше і порушується порядок розміщення. Такий процес саме і є переходом тіла з кристалічного стану в рідкий (аморфний). При переході речовини з кристалічного стану в рідкий стрибкоподібно збільшується потенціальна енергія атомів і молекул.

На основі отриманого раніше матеріалу вводиться поняття теплового розширення тіл. Учням пояснюється, що як для кристалічних тіл так і для аморфних тіл характерним є теплов

К-во Просмотров: 279
Бесплатно скачать Курсовая работа: Тепловое расширение тел