Курсовая работа: Термическая утилизация полимерных отходов, содержащих поливинилхлорид
Однако в настоящее время применение ПВХ постепенно ограничивается, что связано, прежде всего, с экологическими проблемами, возникающими при эксплуатации изделий, их утилизации и вторичной переработке. При старении полимеров на основе ПВХ наряду с потерей физико-механических свойств наблюдается негативное воздействие на окружающую среду и человека, обусловленное процессами дегидрохлорирования ПВХ, усиливающимися при температуре 50 — 80 °С (образуются высокотоксичные хлорсодержащие полиароматические соединения).
Это определяет актуальность проблемы разработки безопасных технологий утилизации и переработки отработанных изделий, содержащих ПВХ.
К основным способам утилизации отходов полимерных материалов относятся:
• термическое разложение в инертной атмосфере (пиролиз);
• сжигание;
• разложение с получением исходных низкомолекулярных соединений (деполимеризация);
• вторичная переработка (литье под давлением, экструзия, прессование и др.).
Наиболее сложно решаются вопросы утилизации смеси полимерных отходов, содержащих наряду с ПВХ полиолефины (полиэтилен, полипропилен), полистирол, полиуретаны, полиамиды и др.
Анализ существующих технологий обезвреживания смеси полимерных отходов позволяет сделать вывод о целесообразности использования термической переработки, основанной на процессах деструкции в инертной атмосфере.
При пиролизе полимеров образуются газы, часть которых способна конденсироваться с образованием высококалорийного жидкого топлива, некондесируемые газы, содержащие метан и водород, обладающие высокой теплотворной способностью, и карбонизат, который может найти применение в технологических процессах. Высокий энергетический потенциал пиролизных газов позволяет проводить процесс утилизации в автотермическом режиме.
Термическая деструкция полиолефинов, полистиролов, полиамидов достаточно хорошо исследована, установлен температурный интервал их переработки - 400 - 500 °С.
При исследовании процессов деструкции ПВХ были использованы методы термодинамического моделирования, позволяющие определить равновесный состав системы в зависимости от температуры и установить режимы проведения термической утилизации отходов, обеспечивающие безопасность образующихся продуктов.
Термодинамические расчеты пиролиза ПВХ проводили с применением программного продукта "ИВТАНТЕРМО", разработанного в центре данных о термодинамических свойствах индивидуальных веществ "ТЕРМОЦЕНТР им. академика В.П. Глушко".
При термодинамическом моделировании деструкции ПВХ было принято следующее допущение: результаты расчетов, проведенные для 10 — 20 структурных звеньев ПВХ, справедливы для всего полимера в целом.
Известно, что при энергетических воздействиях на ПВХ возможны дегидрохлорирование, окисление, деструкция макроцепей с образованием алканов, структурирование, ароматизация и графитизация, образование хлоралканов, термодинамическая вероятность и глубина протекания которых зависят, прежде всего, от температуры.
Ниже приведены результаты расчетов равновесного состава системы, образующейся при пиролизе ПВХ, содержащего 20 структурных звеньев (-СН2 -СНС1-)20 (С (графит) — в конденсированной фазе, остальные — в газовой): Расчет продуктов пиролиза проведен при 1000 К, состав смеси указан при охлаждении продуктов пиролиза до 298 К, масса исходного продукта 1250 г, его состав, моль: [С] = 40; [Н] = 60; [С1] = 20.
Расчеты показали, что все атомы хлора, содержащиеся в ПВХ, расходуются на образование хлороводорода. Основные продукты пиролиза — пироуглерод (графит), хлороводород НС1 и метан СН4 , содержание которых зависит от температуры (рис. 1).
Карбонизация ПВХ начинается при температуре выше 400 К, максимальное содержание пироуглерода достигается при 800 — 900 К.
Основной реакцией при деструкции ПВХ является дегидрохлорирование, которое активно протекает при 400 — 650 К. Содержание НС1 в равновесной системе уменьшается при температуре выше 1000 К, что можно объяснить термической диссоциацией образующегося хлороводорода (см. рис. 1, б).
Анализ зависимости изменения концентрации метана в пиролизных газах от температуры процесса показал, что его содержание снижается при температуре выше 800 К в результате крекинга (температура начала разложения 780 К) (см. рис. 1, в)
Таким образом, проведенное термодинамическое моделирование процессов пиролиза ПВХ позволило установить оптимальный температурный интервал термической обработки 700 — 800 К.
При деструкции ПВХ выделяется хлороводород, его содержание в образующихся пиролизных газах составляет более 48 9г по массе, что требует сложной системы их доочистки.
Для обеспечения экологической безопасности термической переработки ПВХ необходимо разработать способ снижения содержания хлороводорода в образующихся газах, например, путем связывания его в низколетучие соединения.
Ниже рассмотрена возможность использования для этих целей оксида кальция:
• проведение пиролиза в присутствии СаО;
• нейтрализация пиролизных газов, содержащих хлороводород, при взаимодействии их с СаО.
Для обоснования оптимальных параметров ведения процесса и выбора наиболее рационального варианта связывания токсичного компонента было выполнено термодинамическое моделирование пиролиза ПВХ в присутствии СаО. С целью определения температурного интервала пиролиза ПВХ в присутствии СаО с помощью термодинамических расчетов были определены зависимости изменения потенциала Гиббса (AG°,). энтальпии (АН0 ,) и константы химического равновесия КОР реакции образования хлорида кальция от температуры:
СаО + 2НС1 = СаС12 + Н2 О.