Курсовая работа: Термодинамический анализ эффективности агрегатов энерготехнологических систем

, (4.25)

где t – температура ОГ, °С; и –коэффициенты формул для средней объемной изобарной теплоемкости i-го компонента сухой части ОГ; – объемная доля i-го компонента в сухой части ОГ (в %); – число компонентов в сухой части ОГ; – объемная доля влаги в ОГ; - коэффициенты формулы средней объемной изобарной теплоемкости для водяного пара. Формула (4.25) учитывает то, что для расчета тепловых балансов в котле–утилизаторе энтальпия отходящих газов должна быть отнесена к 1 м3 сухой части этих газов.

4.6 Определение теоретической температуры продуктов сгорания

В топках паровых котлов, работающих на природном газе, мазуте, угольной пыли, стенки топки покрыты экранными трубами, которые защищают конструкцию от воздействия высоких температур. В котлах-утилизаторах, в которых сжигается низкокалорийное топливо, температуры пламени относительно низкие и потери теплоты в стенки топки нежелательны. По этой причине, в частности, в топочной камере котлов-утилизаторов типа ПКК экранные трубы отсутствуют. Если не учитывать потери теплоты в стенки топочной камеры и принимать, что все полезное тепловыделение в топке затрачивается только на их нагрев, то температуру продуктов сгорания на выходе из топки можно приближенно считать равной так называемой адиабатной температуре горения . Последняя находится на основе уравнения сохранения энергии:

, (4.26)

где – энтальпия продуктов сгорания на выходе из топки, – доля теплоты, теряемая от химической неполноты сгорания ( %), – теплота, вносимая в топку смесью отходящих газов с природным, – теплота, вносимая в топку воздухом, приходящим из воздухоподогревателя.

Теплота, вносимая смесью ОГ с ПГ

, (4.27)

где и – теплота, вносимая в топку соответственно отходящими газами и природным газом. Величина равняется энтальпии отходящих газов :

(4.28)

Вследствие малых значений и невысокой температуры природного газа, поступающего в котел-утилизатор, вторым слагаемым в правой части уравнения (4.27) можно пренебречь. Тогда с учетом (4.28)

. (4.29)

Теплота , вносимая в топку с воздухом, равна его энтальпии на выходе из воздухоподогревателя и может быть вычислена по формуле (4.24) при условии, что на входе в воздухоподогреватель температура воздуха составляет 60…80 °С, а в воздухоподогревателе она повышается на 200…250 °С.

Определив формуле (4.26), можно найти температуру продуктов сгорания на выходе из топки как

. (4.30)


5. ТЕПЛОВОЙ БАЛАНС И ТЕПЛОВОЙ КПД КОТЛА-УТИЛИЗАТОРА

5.1 Составляющие теплового баланса

Тепловой баланс котла вытекает из закона сохранения энергии и устанавливает равенство между количеством подведенной и расходуемой теплоты. В общем виде он записывается так:

=. (4.31)

Суммарное количество теплоты, внесенной в котел, называется располагаемой теплотой , которая является приходной частью теплового баланса:

=. (4.32)

Располагаемая теплота включает в себя все виды теплоты, внесенной в котел* :

, (4.33)

где и – соответственно низшая теплота сгорания и физическая теплота смеси ОГ с ПГ; – теплота, внесенная в котлоагрегат воздухом при подогреве его вне агрегата посторонним источником энергии (не в воздухоподогревателе котла).

Если принять энтальпию воздуха в окружающей среде за начало отсчета, то теплоту внешнего подогрева воздуха можно определить по формуле:

, (4.34)

где и – соответственно энтальпии воздуха на входе в воздухоподогреватель котла после его предварительного подогрева (например, в паровом калорифере) до температуры и холодного воздуха с температурой . Как было сказано выше в разделе 4.6, температуру принимают равной 60…80 °С. Температура холодного воздуха принимается обычно равной 30 °С.

Если записать составляющие расходной части равенства (4.31) применительно к рассматриваемому котлу-утилизатору, то в развернутом виде уравнение теплового баланса котла будет иметь вид:

, (4.35)

К-во Просмотров: 230
Бесплатно скачать Курсовая работа: Термодинамический анализ эффективности агрегатов энерготехнологических систем