Курсовая работа: Термодинамический анализ эффективности агрегатов энерготехнологических систем
, (4.25)
где t – температура ОГ, °С; и
–коэффициенты формул для средней объемной изобарной теплоемкости i-го компонента сухой части ОГ;
– объемная доля i-го компонента в сухой части ОГ (в %);
– число компонентов в сухой части ОГ;
– объемная доля влаги в ОГ;
- коэффициенты формулы средней объемной изобарной теплоемкости для водяного пара. Формула (4.25) учитывает то, что для расчета тепловых балансов в котле–утилизаторе энтальпия отходящих газов должна быть отнесена к 1 м3 сухой части этих газов.
4.6 Определение теоретической температуры продуктов сгорания
В топках паровых котлов, работающих на природном газе, мазуте, угольной пыли, стенки топки покрыты экранными трубами, которые защищают конструкцию от воздействия высоких температур. В котлах-утилизаторах, в которых сжигается низкокалорийное топливо, температуры пламени относительно низкие и потери теплоты в стенки топки нежелательны. По этой причине, в частности, в топочной камере котлов-утилизаторов типа ПКК экранные трубы отсутствуют. Если не учитывать потери теплоты в стенки топочной камеры и принимать, что все полезное тепловыделение в топке затрачивается только на их нагрев, то температуру продуктов сгорания на выходе из топки можно приближенно считать равной так называемой адиабатной температуре горения . Последняя находится на основе уравнения сохранения энергии:
, (4.26)
где – энтальпия продуктов сгорания на выходе из топки,
– доля теплоты, теряемая от химической неполноты сгорания ( %),
– теплота, вносимая в топку смесью отходящих газов с природным,
– теплота, вносимая в топку воздухом, приходящим из воздухоподогревателя.
Теплота, вносимая смесью ОГ с ПГ
, (4.27)
где и
– теплота, вносимая в топку соответственно отходящими газами и природным газом. Величина
равняется энтальпии отходящих газов
:
(4.28)
Вследствие малых значений и невысокой температуры природного газа, поступающего в котел-утилизатор, вторым слагаемым в правой части уравнения (4.27) можно пренебречь. Тогда с учетом (4.28)
. (4.29)
Теплота , вносимая в топку с воздухом, равна его энтальпии на выходе из воздухоподогревателя и может быть вычислена по формуле (4.24) при условии, что на входе в воздухоподогреватель температура воздуха составляет 60…80 °С, а в воздухоподогревателе она повышается на 200…250 °С.
Определив формуле (4.26), можно найти температуру продуктов сгорания на выходе из топки как
. (4.30)
5. ТЕПЛОВОЙ БАЛАНС И ТЕПЛОВОЙ КПД КОТЛА-УТИЛИЗАТОРА
5.1 Составляющие теплового баланса
Тепловой баланс котла вытекает из закона сохранения энергии и устанавливает равенство между количеством подведенной и расходуемой
теплоты. В общем виде он записывается так:
=
. (4.31)
Суммарное количество теплоты, внесенной в котел, называется располагаемой теплотой , которая является приходной частью теплового баланса:
=
. (4.32)
Располагаемая теплота включает в себя все виды теплоты, внесенной в котел* :
, (4.33)
где и
– соответственно низшая теплота сгорания и физическая теплота смеси ОГ с ПГ;
– теплота, внесенная в котлоагрегат воздухом при подогреве его вне агрегата посторонним источником энергии (не в воздухоподогревателе котла).
Если принять энтальпию воздуха в окружающей среде за начало отсчета, то теплоту внешнего подогрева воздуха можно определить по формуле:
, (4.34)
где и
– соответственно энтальпии воздуха на входе в воздухоподогреватель котла после его предварительного подогрева (например, в паровом калорифере) до температуры
и холодного воздуха с температурой
. Как было сказано выше в разделе 4.6, температуру
принимают равной 60…80 °С. Температура холодного воздуха
принимается обычно равной 30 °С.
Если записать составляющие расходной части равенства (4.31) применительно к рассматриваемому котлу-утилизатору, то в развернутом виде уравнение теплового баланса котла будет иметь вид:
, (4.35)