Курсовая работа: Тонкослойная хроматография остаточных концентраций пестицидов в пищевых продуктах
2)разделение компонентов пробы на отдельные зоны в потоке подвижной фазы;
3) обнаружение зон на слое сорбента (часто реагентом, образующим с разделенными веществами окрашенные соединения);
4) количественная оценка полученного разделения, включая определение величины удерживания и определение содержания вещества в зонах на хроматограмме.
Положение зоны вещества на хроматограмме характеризуется величиной Rf , которая равна отношению расстояния от стартовой линии до центра зоны вещества к расстоянию от стартовой линии до линии фронта. Значение Rf - величина постоянная для данного соединения в данной истеме и зависит от ряда условий: способа элюирования, качества и активности сорбента, толщины слоя, качества растворителей, количества нанесенного вещества, длины пробега растворителей, положения стартовой линии и почти не зависит от температуры. По этой величине проводят идентификацию компонентов в смеси.
На качество разделения компонентов смеси в планарной хроматографии влияет большое число факторов: тип разделительной камеры; предварительное насыщение камеры и слоя сорбента парами подвижной фазы; стартовый размер пятна; расстояние от старта до нижнего края пластинки; относительная влажность воздуха лабораторного помещения; средний диаметр частиц и их форма; толщина и равномерность нанесения слоя сорбента; наличие микроповреждений слоя; тип вещества, связывающего сорбент; скорость элюирования; объем растворителя в камере; наличие примесей в элюенте; конвекция в газовой фазе внутри камеры.
Для разделения смесей веществ в тонком слое сорбента применяют адсорбционную, распределительную и ионообменную хроматографию, отличающиеся, прежде всего характером взаимодействий между растворенными веществами и твердой или жидкой фазами, с которыми они соприкасаются. На практике эти взаимодействия почти никогда не протекают изолированно, и разделение веществ обусловлено несколькими взаимодействиями. При выборе подходящего варианта хроматографии в первую очередь следует обратить внимание на строение разделяемых веществ. При помощи адсорбционной и распределительной хроматографии разделяются вещества, строение которых различается природой, числом и характером полярных и неполярных заместителей. При хроматографировании в тонком слое сорбента чаще всего применяют адсорбционную хроматографию, которая проще по выполнению, более эффективна, а результаты анализа более воспроизводимы.
Сорбенты в тонкослойной хроматографии
В качестве сорбентов в ТСХ применяют материалы, которые отвечают следующим требованиям: образуют химически и физически стабильные слои; не образуют ковалентных связей с разделяемыми веществами; не растворяются в подвижной фазе или перемещаются вместе с ней по пластинке; не содержат компонентов, мешающих разделению или детектированию; не имеют собственной окраски; не набухают и не сжимаются под действием подвижной фазы.
В качестве подложки для сорбента используется стекло, алюминиевая фольга, полимерные пленки (полиэтилентерефталат). Для придания стабильности слоя сорбента на подложке используются различные связующие вещества: гипс (5-10%), силиказоль, силикаты щелочных металлов, полиакриламид, полиакриловый эфир, крахмал. К адсорбенту часто добавляют флуоресцентный индикатор для детектирования веществ, поглощающих в УФ-области спектра. С этой целью используют: смесь силикатов цинка и магния; смесь сульфидов цинка и кадмия; вольфраматы щелочноземельных элементов.
Большое значение, особенно для эффективности разделения, имеют такие характеристики сорбентов, как диаметр частиц, среднее распределение частиц по размерам и размер пор. В классической тонкослойной хроматографии для производства пластинок используются частицы с размером 5 - 20 мкм. Для высокоэффективной тонкослойной хроматографии (ВЭТСХ) необходим сорбент, диаметр частиц которого составляет 5 - 7 мкм. Сравнение характеристик пластинок для ТСХ и ВЭТСХ приведено в таБЛ.22. Монолитные сорбенты представляют собой новое поколение стационарных фаз, которые могут быть использованы и в планарной хроматографии получают прямой сополимеризацией метакриловых полимеров, например, сополимера глицинметакрилата и этилендиметакрилата. Монолитные стационарные фазы не содержат частиц, а роль разделительного пространства выполняют поверхность и объем проточных каналов (пор). Макропористая структура монолитных сорбентов содержит как минимум два вида пор: макро- и мезопоры. Преимущества таких носителей заключаются в заметном повышении скорости и эффективности разделения, так как для них отсутствуют обычные диффузионные ограничения межфазного массообмена.
Таблица 1. Сравнение характеристик пластинок для классической (ТСХ) и высокоэффективной (ВЭТСХ) тонкослойной хроматографии.
Характеристики | ТСХ | ВЭТСХ | |
Средний размер частиц, мкм | 5 -20 | 5-7 | |
Толщина слоя, мкм | 250 | 100,200 | |
Количество проб | 12 | 36 -72 | |
Длина пробега фронта растворителя, мм | 100 - 150 | 30 - 50 | |
Время разделения, мин | 30 - 200 | 3 -20 | |
Количество растворителя, мл | 50 | 5 -10 | |
Предел детектирования, нг | |||
поглощение | 100 - 1000 | 10 - 100 | I |
I | |||
флуоресценция | 1 - 100 | 0,1 - 10 | I |
Основные типы сорбентов, используемых в ТСХ
Силикагель
полярный адсорбент, содержит активные силанольные и силоксановые группы, его применяют для разделения соединений различной полярности.
Оксид алюминия
полярный адсорбент с гетерогенной поверхностью, содержит активные ОН-группы, обладает заметно выраженными протоноакцепторными свойствами; его применяют для разделения ароматических углеводородов, алкалоидов, хлоруглеводородов, стероидов
Флоросил - основной силикат магния, занимает промежуточное положение между оксидом алюминия и силикагелем; удобен для разделения флаваноидов, стероидов и ацетилированных углеводородов
Полиамиды - группа полярных сорбентов со смешанным
механизмом разделения: карбоксамидная группа ответственна за адсорбционный механизм, метиленовые звенья - за распределительный механизм. Эти сорбенты применяют для разделения пищевых красителей, флаваноидов, танинов, нитрофенолов, спиртов, кислот.
Модифицированные силикагели с привитыми группами (амино, циано, диол-, C2 -,Cg -, C1g -), отличными по полярности.
Важной характеристикой сорбента является его активность, она зависит от содержания воды и понижается при увеличении содержания воды в сорбенте.
Для успешного разделения смесей веществ большое значение имеет выбор сорбента. В первую очередь нужно исходить из свойств разделяемых соединений: их растворимости (гидрофильности, гидрофобности), содержания и характера функциональных групп. Насыщенные углеводороды адсорбируются слабо или совсем не адсорбируются на силикагелях и оксиде алюминия. Введение двойных связей, особенно сопряженных, увеличивает адсорбционную способность соединений.
Функциональные группы в еще большей степени усиливают способность веществ к адсорбции. Адсорбционная способность функциональных групп возрастает в следующем порядке:
СН=СН<ОСНз<СООR <C=O<CHO<SH<NН2 <OH<COOH.
Для количественной оценки содержания вещества в хроматографическux зонах используют различные методы:
1. Определение с удалением хроматографической зоны с пластинки можно проводить двояким образом: переносом хроматографической зоны вместе с сорбентом либо экстрагированием хроматографической зоны со слоя сорбента.
2. Определение соединений непосредственно на пластинке методом визуального сравнения размеров площадей пятен и их окраски с соответствующими параметрами пятен стандартных образцов
3. Метод денситометрии, повышающий точность результатов определения, основан на сканировании хроматограмм в видимом и УФсвете с помощью «хроматографических спектрофотометров» денситометров. Денситометры позволяют измерять поглощение света веществом на хроматограмме в режиме пропускания или отражения, а также флуоресценцию и ее тушение. Режим пропускания доступен, если только исследуемое вещество имеет полосу поглощения в видимой области спектра. В У Ф-области регистрацию в режиме про пускания осуществить нельзя из-за собственного поглощения силикагеля и подложки хроматограммы.
4. Метод вuдеоденсuтометрuu - сравнительно новый метод для количественной обработки хроматограмм. Принцип метода заключается во введении изображения хроматограммы в компьютер с помощью видеокамеры или цифровой камеры с последующим сравнением интенсивностей пятен стандартных и определяемых соединений. Видеоденситометр включает осветительный блок, видеокамеру с платой видеоввода или сканер, персональный компьютер с установленной операционной системой Windows и соответствующим программным обеспечением. В России такие комплексы производят НТЦ «Ленхром» (г. С.-Петербург) - денситометр «ДенСкан-О4» и «Сорбполимер» (г. Краснодар) денситометр «Сорбфил». Программа обработки хроматографических данных позволяет выполнять следующие функции: вводить изображения хроматограмм и сохранять их с высоким качеством и разрешением; выделять на введенном изображении хроматограммы рабочий участок, на котором будет производиться дальнейшая обработка изображения; производить