Курсовая работа: Топологія геометрична та коливальна структура фулеренів Механізм утворення фулеренів
Таким чином, зіткнення, енергія яких достатня для подолання порогу ізомеризації, ініціюють швидкий розрив зв'язків в плоских кластерах досить великого розміру з подальшою перебудовою в структуру фулерена. Процес формування фулеренів починається з кластера С33 + , який дає фулерен С30 + з втратою групи С3 . Теоретичні розрахунки підтверджують: фулерени саме такої величини вперше стають стійкішими, ніж відповідні плоскі циклічні кластери. Із зростанням маси кластерів процес утворення фулеренів сильно прискорюється, що видно вже з порівняння хроматограм для С39 + і С40 + . Це дає підстави для висновку: активаційний бар'єр, пов'язаний з перетворенням плоских кластерів у фулерени, швидко падає із збільшенням маси, що узгоджується із зростанням стабільності фулеренів в порівнянні з їх попередниками, передбаченим теоретично. За оцінками, енергія активації, необхідна для трансформації поліциклічних кластерів розміром 50-70 атомів у фулерені, менше, ніж типова енергія одинарного σ-зв’зку С-С. Автори знайшли, що кластери С58 + реструктуруються у фулерен майже також легко, як і С60 + . Дещо пізніше в одній з груп, що займається іонною хроматографією, поставлені ще тонші експерименти, в яких дрейфуючі катіони піддавалися додатковій лазерній дії вже в трубі дрейфу, щоб ініціювати подальші перетворення. Синхронізація лазерного імпульсу з певним часом дрейфу дозволяє впливати випромінюванням на конкретні ізомери і відокремити процеси, що відбуваються з ними, від інших. Встановлено: чим більше циклів має кластер, тим легше він трансформуєтся у фулерен. Різниця в швидкості процесу для кластерів, що містять чотири або три кільця, в порівнянні з біциклічними, вельми помітна. Прості ж кільця схильні, швидше, до фрагментації, чим до реорганізації.
Ще одним доводом на користь того, що проміжні продукти − попередники фулеренів − не обов'язково повинні виглядати як гостьові фрагменти цих молекул, є експериментальні дані, які показують, що фулерени легко утворюються шляхом коалесценциєю («злипанням») кластерів середнього розміру. Такі дані одержані в дослідах з лазерною десорбцією циклічних вуглецевих оксидів наступного вигляду(див Д.В, рис. 6).
Під дією лазерного променя молекули (або їх частина) втрачають кисень і перетворюються в чисто вуглецеві моноциклічні кластери, що містять відповідно 18, 24 і 30 атомів, які присутні в продуктах випаровування і у вигляді катіонів. При десорбції з'єднання 3 кільця С30 реагують з іонами С30 + утворюючи фуллерен С60 + (див. Д.Г,рис.7 ). Аналогічно коалесценція чотирьох 18-членних або трьох 24-членних циклів приводить до фуллерену С70 + через попереднє утворення С72 + . С60 + і С70 + є домінуючими продуктами за відсутності процесів приєднання малих вуглецевих груп типу С2 . Останнє ясно з виду мас-спектрів, в яких найбільш виділяються піки, відповідні катіонам з різницею чисел атомів вуглецю, кратною 18 або 24. В той же час наявність у складі плазми малих груп, що випаровується, достатньо очевидна. На рис.8(Д.Г) представлені мас-спектри негативно заряджених кластерів, в яких піки розташовані на відстанях, якраз відповідних масовому числу С2 . Це доводить, що серед аніонів відбувається як приєднання, так і відщеплення даної групи. Інтенсивності іонів С60 - і С70 - особливо не виділяються на тлі інших, тобто дані аніони не володіють структурою фулеренів. Описана різниця в поведінці катіонів і аніонів відносно реакцій з С2 перекликається з приведеними раніше фактами щодо ролі катіонів в процесі синтезу фулеренів, пов'язаними з дуговим синтезом в електричному полі.
З приводу спостереження заряджених частинок у вуглецевій плазмі необхідні наступні зауваження. Реєстровані в мас-спектрах іони утворюються в згустку, що виникає при дії лазерного променя на графіт. Такі мас-спектри відображають іонний склад плазми. Тим часом для отримання даних про механізм утворення фулеренів в першу чергу потрібна інформація про її молекулярний склад. Це питання ніде не обговорюється, маючи на увазі, що всі висновки, зроблені з аналізу поведінки іонів, автоматично можна перенести на нейтральні частинки. Відносні інтенсивності іонів (як того, так і іншого знаку) в мас-спектрах не зобов'язані відображати молекулярний склад газу. Спектри на рис.7-8(Д.Г) наочно показують: розподіл аніонів і катіонів має абсолютно різний вигляд. Якби іони знаходилися в іонізаційній рівновазі з відповідними-нейтральнимі частинками (при цьому рівноваги в реакціях іншого типу може і не бути), то їх інтенсивності відповідали б концентраціям незаряджених кластерів з поправкою на неоднакову величину спорідненості до електрона у різних кластерів у випадку аніонів і на величину енергії іонізації у випадку катіонів. Очевидно, що навіть при невеликій відмінності на 0.2-0.3 еВ поправка може бути вельми істотною через експоненціальний характер залежності концентрації заряджених частинок від цих величин згідно формулі Саха-Ленгмюра. Зазначимо, що в таких експериментальних методах з використанням мас-спектрометра, як МАLDI, LDI, електроспрей і ін., спостереження іонів звичайно вважається індикатором присутності в досліджуваних зразках відповідних нейтральних частинок.
1.4 Бімолекулярні реакції
Процес синтезу фулеренів йде в умовах кінетичного контролю. До такого висновку підштовхують: термодинамічні міркування, згідно яким утворення вищих фулеренів (що підкоряються правилу ізольованих пентагонов) вигідніше, ніж С60 або С70 , всупереч тому, що має місце насправді; факти, які говорять, що для ефективного виходу фулеренів необхідні вельми специфічні умови. Резюмуючи основні результати, описані вище, розглянемо, яка загальна кінетична картина складається на їх основі. Почати доцільно з етапу, на якому в плазмі дугового разряду вже утворилася достатня кількість кластерів Сn середнього розміру (умовно кажучи, п> 15-20), які при об'єднанні можуть мати число атомів, необхідне для появи фулеренів. На раніших стадіях має місце поступове зростання лінійних молекул за рахунок простого приєднання атомів або малих груп, а також утворення циклічних структур невеликого розміру. На даній же стадії співіснують кластери трьох типів: циклічні (з різною кількістю циклів); «погано організовані» фулерени, тобто що не підкоряються правилу ізольованих пентагонів; «справжні» фулерени. Всі ці компоненти так або інакше реагують між собою, хоча реакційна здатність кластерів різного типу сильно відрізняється. Все це відбувається в умовах ще високої температури і досить високих концентрацій, тобто до «заморожування» складу плазми в буферному газі, коли частинки мають можливість стикатися між собою. Цілком очевидно, що основну роль гратимуть бімолекулярні реакції. Відповідно до реакційної здатності учасників їх можна розділити на три великі класи відносно величини константи швидкості. До першого класу відносяться реакції збільшення кластерів середнього розміру за рахунок їх об'єднання (коалесценція) з подальшим відпалом у фулерени (у правильні або неправильні, залежно від результуючого числа атомів):
Сn (цикл)+ Сm (цикл)→ Сn + m (возб.)→ Сn + m -2 (фул.)+C2 (2.1)
Емісія групи С2 позначена тільки як приклад. При непарному числі атомів в кластері, що виходить при коалесценції, може відбутися викид C або С3 . У оригінальній літературі термін «відпал» уживається без достатньо ясного роз'яснення його сенсу. Часто можна припускати, що мається на увазі перебудова енергетично збудженого кластера під дією молекулярних ударів з боку буферного газу. Ми маємо на увазі тут мимовільне перегрупування з викидом малого фрагменту, що відбувається без жодної участі інертного газу. Такий процес можливий завдяки тому, що коли два кластери середнього розміру зближуються на відстань, близьку до довжини зв'язку С-С, тобто вступають в хімічну взаємодію, то складену частинку можна розглядати як єдине ціле. Енергія цієї частинки набагато перевищує межу дисоціації на фулерені і фрагменті. Кажучи квантовомеханічною мовою, рівень енергії кластера Сn + m лежить у області безперервного спек