Курсовая работа: Транспортная задача линейного программирования
.
Замечание. В диагональном методе не учитываются величины тарифов, в методе же наименьшей стоимости эти величины учитываются, и часто последний метод приводит к плану с меньшими общими затратами (что и имеет место в нашем примере), хотя это и не обязательно.
Кроме рассмотренных выше способов иногда используется, так называемый, метод Фогеля. Суть его состоит в следующем: В распределительной таблице по строкам и столбцам определяется разность между двумя наименьшими тарифами. Отмечается наибольшая разность. Далее в строке (столбце) с наибольшей разностью заполняется клетка с наименьшим тарифом. Строки (столбцы) с нулевым остатком груза в дальнейшем в расчет не принимаются. На каждом этапе загружается только одна клетка. Распределение груза производится, как и ранее.
4.Понятие потенциала и цикла.
Для перехода от одного базиса к другому при решении транспортной задачи используются так называемые циклы.
Циклом пересчета или короче, циклом в таблице перевозок называется последовательность неизвестных, удовлетворяющая следующим условиям:
Одно из неизвестных последовательности свободное, а все остальные – базисные.
Каждые два соседних в последовательности неизвестных лежат либо в одном столбце, либо в одной строке.
Три последовательных неизвестных не могут находиться в одном столбце или в одной строке.
Если, начиная с какого-либо неизвестного, мы будем последовательно переходить от одного к следующему за ним неизвестному то, через несколько шагов мы вернемся к исходному неизвестному.
Второе условие означает, что у двух соседних неизвестных в цикле либо первые, либо вторые индексы одинаковы.
Если каждые два соседних неизвестных цикла соединить отрезком прямой, то будет получено геометрическое изображение цикла – замкнутая ломаная из чередующихся горизонтальных и вертикальных звеньев, одна из вершин которой находится в свободной клетке, а остальные - в базисных клетках.
Можно доказать, что для любой свободной клетки таблицы перевозок существует один и только один цикл, содержащий свободное неизвестное из этой клетки, и что число вершин в цикле всегда четно.
Так, например, в таблице перевозок, составленной по диагональному методу при решения задачи из предыдущего пункта, неизвестному соответствует цикл и т.д.
Пусть теперь мы имеем некоторую свободную клетку с соответствующим ей циклом. Если мы изменим значение свободного неизвестного, увеличив его на некоторое число , то, переходя последовательно от одной вершины цикла к другой, мы должны будем в силу неизменности сумм по строкам и по столбцам поочередно уменьшать и увеличивать значения неизвестных в цикле на то же число. Например, в указанном выше цикле для свободного неизвестного получим:
старые значения: ;
новые значения:
Очевидно, если снабдить вершины цикла поочередно знаками “+” и “–“, приписав вершине в свободной клетке знак “+”, то можно сказать, что в вершинах со знаком “+” число прибавляется к прежнему значению неизвестного, находящегося в этой вершине, а в вершинах со знаком “–“ это число вычитается из прежнего значения неизвестного, находящегося в этой вершине.
Замечание. Так как число вершин в цикле всегда четно, то, возвращаясь в свободную клетку, мы должны будем приписать ей знак “+”, т. е. тот знак, который ей уже приписан при выходе из нее. Это очень существенное обстоятельство, так как иначе мы пришли бы к противоречию. Безразлично также, в каком направлении обходится цикл при “означивании” вершин.
Если в качестве выбрать наименьшее из чисел, стоящих в вершинах, снабженных знаком “–“, то, по крайней мере, одно из прежних базисных неизвестных примет значение нуль, и мы можем перевести его в число свободных неизвестных, сделав вместо него базисным то неизвестное, которое было свободным.
Так, например, в рассмотренном выше цикле имеем отрицательные вершины и ; следовательно, выбрав , мы получаем:
старые значения: ;
новые значения:
т. е. вместо прежнего базисного решения получаем новое базисное решение:
Пункты Отправления | Пункты назначения | Запасы | |||||||||
К-во Просмотров: 738
Бесплатно скачать Курсовая работа: Транспортная задача линейного программирования
|