Курсовая работа: Турбидиметрический и нефелометрический методы анализа объектов окружающей среды
Введение
В аналитической химии часто приходится сталкиваться с определением малых количеств (следов) веществ. Например, содержание примесей в чистых металлах исчисляется тысячными долями процента. Содержание такого количества вещества невозможно определить химическими методами, в таких случаях приходится использовать оптические методы анализа. Наибольшее распространение имеет абсорбционный анализ, который может выполняться спектрофотомерией, фотоколориметрией и колориметрией.
К оптическим методам относятся турбодиметрия и нефелометрия — анализ основан на поглощении и рассеянии лучистой энергии взвешенными частицами определяемого вещества, а также флуорометрия — основан на измерении вторичного излучения, возникающего при взаимодействии лучистой энергии с анализируемым соединением, и др.
Моя курсовая работа посвящена теоретическим основам турбидиметрии и нефелометрии и их практическому применению в анализе объектов окружающей среды.
Глава 1. НЕФЕЛОМЕТРИЯ И ТУРБИДИМЕТРИЯ
Нефелометрический и турбидиметрический методы применяются для анализа суспензий, эмульсий, различных взвесей и других мутных сред. Интенсивность пучка света, проходящего через такую среду, уменьшается за счет рассеивания и поглощения света взвешенными частицами.
Нефелометрический метод определения концентрации основан на измерении интенсивности света, рассеянного взвешенными частицами. Интенсивность рассеянного света подчиняется закону Релея:
где Iн и I0 - интенсивности рассеянного и падающего света; n1 и n2 - коэффициенты преломления частиц и среды; N - общее количество светорассеивающих частиц; х - объем одной частицы; л - длина волны падающего света; r - расстояние до приемника рассеянного света; в - угол между падающим и рассеянным светом. В условиях нефелометрического определения ряд величин остается постоянным и уравнение (V.1) переходит в
Множитель 1/ л4 указывает на быстрое возрастание интенсивности рассеянного света с уменьшением длины волны падающего света. Так как красный свет рассеивается меньше, чем любой другой при прочих равных условиях, различные сигнальные огни (стоп-сигналы, огни маяка и т. д.) бывают красные.
Серьезное затруднение в практике нефелометрии состоит в том, что интенсивность рассеянного света зависит от объема частиц. Большое значение в связи с этим приобретает унификация методики приготовления взвеси - строгое соблюдение концентрационных и температурных условий, порядка и скорости смешения растворов, введение защитных коллоидов и т. д. При строгом соблюдении этих условий объемы частиц суспензии получаются примерно одинаковые, и их размер вполне удовлетворительно воспроизводится от опыта к опыту.
Концентрацию можно выразить числом частиц в единице объема:
где V - объем суспензии; NA - постоянная Авогадро.
Подставляя (V.3) в (V.2), получаем:
При постоянных V, х, l уравнение (V.4) принимает вид:
Или
Уравнение (V.6) показывает, что отношение интенсивности рассеянного света к интенсивности падающего пропорционально концентрации взвешенных частиц. Калибровочный график в координатах Iн /I0 как функция С будет линеен. Тем не менее иногда можно встретить рекомендацию строить калибровочный график в координатах Dкаж - С, где Dкаж - так называемая относительная или кажущаяся оптическая плотность, рассчитываемая как Dкаж =-lg(Iн /I0 ) Такая рекомендация дается, например, в заводских описаниях некоторых нефелометров (НФМ и др.).
Из (V.6) следует, что
т.е. Dкаж уменьшается с ростом концентрации, что вполне понятно, так как с увеличением концентрации увеличивается число рассеивающих частиц и интенсивность рассеянного света возрастает.
В соответствии с уравнением (V.7) график в координатах Dкаж - lg С будет линеен в противоположность графику в координатах Dкаж - С.
Турбидиметрические методы основаны на измерении интенсивности света It прошедшего через анализируемую суспензию. При достаточном разбавлении интенсивность прошедшего света подчиняется уравнению
где l - толщина слоя, a k - иногда называют молярным коэффициентом мутности раствора.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--