Курсовая работа: Участок восстановления и дистилляции четыреххлористого титана
Титан имеет атомный номер 22 и расположен в IV переходной группе периодической системы элементов Д.И.Мендлеева. Атомная масса титана – 47,90; атомный объем – 10,7; изотопы – 46, 47, 48, 49, 50.
Титан существует в двух кристаллических модификациях – α и β. Температура полиморфного превращения титана зависит от количества примесей в нем; для чистого металла она равна 882,5°C. Низкотемпературная модификация (α-титан) имеет гексагональную решетку с плотной упаковкой атомов. Высокотемпературная модификация (β-титан) имеет объемно-центрированную кубическую решетку.
Плотность чистого α-титана при 25°C равна 4,507г/см3, β-титана при 900°C – 4,32г/см3, жидкого (технического) при температуре кристаллизации – 4,11г/см3.
Энтропия титана при 25°C равна 7,3ккал/(моль·град), скрытая теплота α→β-томная масса титана мер 22 и расположен в IV переходной группе периодической системы элементов Д.И.Мендлеева. ________________превращения – 0,83ккал/моль, точка плавления 1660°C±4, точка кипения – 3260°C.
Химический состав и механические свойства титановой губки в значительной степени определяются тем способом, которым она получена, а также технологией очистки реакционной массы.
Титан отличается малым сопротивлением ползучести, несмотря на высокую температуру рекристаллизации и плавления. Сплавы на основе титана обладают большей устойчивостью против ползучести, которая еще может быть повышена термической обработкой.
Титан обладает высокой прочностью, твердостью и хорошей пластичностью при малой плотности. По удельной плотности титан превосходит многие конструкционные материалы. Малый коэффициент линейного расширения титана обеспечивает его надежную работу в условиях теплосмен. Отличное сопротивление коррозии позволяет использовать титан для работы во многих агрессивных средах.
Титан можно подвергать всем видам механической обработки, а также сварке различных видов. Поверхность изделий из титана можно упрочнять различными способами и создавать на ней окисную пленку электролитическим путем.
Наряду с преимуществами титан имеет ряд недостатков. Один из них – низкий модуль нормальной упругости, затрудняющий создание жестких и устойчивых конструкций. Но с другой стороны это свойство можно рассматривать и как преимущество, позволяющее снизить величину напряжений, возникающий при знакопеременных нагрузках, а также величину термических напряжений, возникающих при нагреве конструкции. Низкая теплопроводность титана отрицательно сказывается на его эксплуатационных свойствах, ухудшая стойкость при работе в условиях теплосмен. В настоящее время преимущественно применяется не технический титан, а сплавы на его основе.
Титан и сплавы титана активно применяется в авиации и ракетно-космической отрасли. В самолетостроении титан применяют преимуществен для изготовления деталей двигателей, для обшивки корпусов сверхзвуковых самолетов, а также для изготовления некоторых конструкций планеров (особенно в современном гражданском авиастроении).
Другой отраслью, в которой сплавы титана находят активное применение, является химическая промышленность. Такие свойства титана как высокая коррозионная стойкость, низкая смачиваемость жидкостями, а также образование на поверхности защитной окисной пленки, выделяют сплавы титана среди прочих конструкционных материалов для производства элементов химической аппаратуры (холодильники, змеевики, роторы высокоскоростных центрифуг, лопасти и корпуса центробежных насосов для перекачивания растворов хлоридов, слабых растворов соляной кислоты, различных органических кислот).
Широкое применение получила аппаратура из титана в ряде гидрометаллургических производств. Катоды из сплава титана с палладием применяет в промышленном масштабе при производстве марганца.
Из областей, где применение титана не связано с большими масштабами, но дает существенных эффект, следует назвать медицину – изготовление медицинского инструмента, а также внутренних протезов.
Восстановление четыреххлористого титана
С теоретической и практической точек зрения наибольший интерес представляют восстановление четыреххлористого титана магнием или натрием, а также восстановление окислов титана кальцием (гидрохлоридом кальция) и алюминием.
В настоящее время промышленной производство титана основано на восстановлении четыреххлористого титана магнием (магниетермический способ) или натрием (натриетермический способ).
В первом случае для разделения продуктов восстановления титановой губки, магния и хлористого магния – применят в основном способ отгонки магния и хлористого магния от титановой губки при температуре около 1000°C и остаточном давлении в реакторе от нескольких миллиметров ртутного столба в начале процесса до нескольких микронов в конце (так называемый способ вакуумной сепарации).
Во втором случае для разделения продуктов восстановления – титановой губки, хлористого натрия и незначительного количества непрореагировавшего натрия – применяют способ выщелачивания полученного после восстановления реакционной массы слабым раствором соляной кислоты (так называемый гидрометаллургический способ).
Магниетермический способ
Магний – один из наиболее распространенных в природе элементов. Содержание его в земной коре составляет 2,35%. Благодаря крупным месторождениям магниевого сырья, высокопроизводительной технологии получения металла электролизом и сравнительно небольшой стоимости металла, производство магния осуществляется в крупных промышленных масштабах.
Магний отличается высоким сродством к хлору ( = 55 ккал/г-атом хлора), которое при 800°C на 12,0 ккал/г-атом хлора (= 43 ккал/г-атом хлора), что вполне достаточно для полного восстановления магнием. Соотношение температур плавления и кипения магния и образующегося в результате восстановления благоприятно для проведения процесса в интервале температур 720-900°C. Магний и титан практически взаимно не растворимы.
Все это, а также технологические особенности процесса восстановления титана делают магний одним из наиболее благоприятных восстановителей для организации крупного производства титановой губки магниетермическим способом.
Патент на получение титановой губки магниетермическим способом был выдан в 1940г в США американскому исследователю Кроллю, проводившему опыты на крупнолабораторной установке.
Титановая губка, получаемая магниетермическим способом, в промышленных условиях содержит обычно 0,03–0,15% O2; 0,01–0,04% N2; 0,02–0,15% Fe2; 0,002–0,005% H2; 0,02–0,12% Cl; 0,01–0,05% Si; 0,01–0,03% C; около 0,01% Al; 0,01% Ni; 0,01% V и другие примеси.
Вместе с TiCl4 в губку вносится около 40% всего азота, более 20% кислорода, около 15% железа и значительная часть углерода. Вместе с магнием в губку вносится около 20% N2, 40% O2, 15% Fe. Около 50–70% железа, содержащегося в титановой губки попадает в нее в результате взаимодействия титана с материалом реактора. Установлено, что большая часть примесей из материала реактора переходит в титан в период вакуумной сепарации, особенно в последний период, когда температура на границе стенок реактора достигает максимальных значений.
Физико-химические основы восстановления
Магниетермическое производство металлического титана основано на использовании реакции:
+ | = | + | ||||
(ж.пар) | (ж.пар) | (тв) | (ж.пар) |
В стандартных условиях эта реакция характеризуется высокими по абсолютной величине и отрицательными по знаку значениями энтальпии и энергии Гиббса:
Температурная зависимость константы равновесия не может являться монотонной функцией, поскольку участвующие в реакции исходные и конечные вещества претерпевают фазовые превращения.
По аналогии со сложными реакциями, которые протекают через промежуточные соединения, восстановление титана можно представить как ступенчатое восстановление четыреххлористого титана из его низших хлоридов:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--