Курсовая работа: Углеводородный состав прямогонных бензинов

Бензин 20—200

Керосин 175—275

Газойль 200—400

Смазочные масла Выше 300

(могут перегоняться только в вакууме)

Мазут —

Пек или кокс—

Состав фракций нефти, кипящих до 100°, известен довольно точно. Вследствие большого числа изомеров полный анализ фракций, кипящих выше 100°*, невозможен, хотя отдельные простейшие ароматические углеводороды еще могут быть идентифицированы. Чтобы определить относительные количества парафинов, нафтенов и ароматических углеводородов в высших фракциях нефти, обычно пользуются методом Уотермена [4]. По этому методу сначала находят содержание ароматических углеводородов гидрированием или определением анилиновой точки; после гидрирования находят по удельному весу и показателю преломления соотношение между нафтенами и парафинами. Метод Уотермена не дает возможность определять абсолютное количество углеводородов; тем не менее он является наилучшим из всех разработанных методов.

Определенный этим методом средний состав бензинов прямой гонки (конечная т. кип. 150—200°), т. е. бензинов, выделенных из нефти простой ее разгонкой, а не полученных с помощью термической или какой-либо химической обработки нефти, приведен ниже:

Углеводородыоб. %

Ароматические 6—22

Нафтеновые20—50

Парафиновые40—75

В большинстве случаев состав бензина прямой гонки соответствует составу исходной сырой нефти; таким образом, сырье с большим содержанием парафинов дает бензин, в котором преобладают эти же углеводороды. Содержание ароматических и нафтеновых углеводородов в отдельных фракциях бензина обычно увеличивается с повышением температуры кипения фракции. Об этом свидетельствуют данные табл. 4, помазывающие распределение углеводородов в различных фракциях пенсильванских бензинов прямой гонки.

Бензин состоит из углеводородов, содержащих в молекуле от 4 до 12 атомов углерода. Углеводороды керосина содержат от 9 до 16 атомов углерода. Присутствующие в газойле углеводороды, вероятно, имеют 15—25 атомов углерода в молекуле. Анализ по методу Уотермена показал, что газойли, кипящие в пределах 260—382°, состоят из 43—74% парафинов, 19—35% нафтенов и 7—22% ароматических углеводородов. Молекулярный вес смазочных масел находится в пределах 300—1000, что соответствует присутствию в них углеводородов с 20—70 атомами углерода. Фракции смазочных масел содержат твердый парафин и ароматические углеводороды, которые обычно удаляют в процессе очистки.


В углеводородах смазочных парафиновых и ароматических углеводородов. Отсюда следует вывод, что фракции смазочных масел содержат углеводороды с конденсированными кольцами. Типичное смазочное масло (индекс вязкости равен 100), полученное из нефти метанового основания, представляет собою смесь жирно-ароматических и жирно-нафтеновых углеводородов, у которых на долю ароматических и нафтеновых циклов падает 25% углеродных атомов, а 75% углеродных атомов — на долю парафинов (вероятно, в виде боковых алкильных цепей). В смазочном масле с индексом вязкости 30, полученном из нефти нафтенового основания, доля углеродных атомов боковых парафиновых цепей составляет 45%, а 55% падает на долю нафтеновых и ароматических циклов. В обоих случаях боковые насыщенные цепи, вероятно, разветвлены.

Больше всего внимания исследователи уделяли выяснению состава бензинов как вследствие сравнительной простоты такой задачи, так и вследствие связи между составом бензина и его октановым числом. В литературе можно найти описания подробных исследований американских, советских и других бензинов прямой гонки. В табл. 5 приведен перечень углеводородов, обнаруженных в американском депентанизированном бензине прямой гонки, полученном из нефти месторождения в Понка-Сити (температуры кипения низших углеводородов помещены в приложении, стр. 411 разгонкой, также осуществляемой под давлением. Эти газы называют обычно «жидкими газами».

Химическое использование низших парафинов, получаемых из природного газа, детально описывается в последующих четырех главах. Этан почти исключительно используют для производства этилена пиролизом. Пропан подвергают пиролизу с целью получения этилена и пропилена, а также окисляют воздухом в смесь кислородсодержащих продуктов. Около двух третей всего количества бутанов дегидрируют в бутилены, а остальную треть окисляют воздухом. Использовать природный газ для получения всех перечисленных продуктов выгодно только вблизи мест его добычи или в местах, расположенных на таком расстоянии, когда стоимость его перекачки по трубопроводу еще оправдывает себя экономически.

3. Разделение сырой нефти

Первичная перегонка сырой нефти с получением шести довольно широких фракций, является лишь очень грубым разделением. Упрощенная схема такой первичной перегонки приведена на рис. 1.

Рис. 1. Первичная перегонка сырой нефти

Первая стадия перегонки называется стабилизацией. Она заключается в удалении части бутанов и всего количества пропана, этана и метана, которые в противном случае могут придать бензину нежелательно высокое давление пара. Эту операцию обычно проводят под умеренным давлением (3 - 5 ата) и получают жидкий дистиллят, состоящий из пентанов и более легких углеводородов. Дистиллят можно в свою очередь подвергнуть стабилизации повторной фракционированной разгонкой; при этом в кубовом остатке получают нормальный пентан и изопентаны.

Вторую стадию перегонки нефти проводят при атмосферном давлении. Как показано на рис. 1, из колонны отбирают несколько фракций; кубовые остатки разделяют затем перегонкой в вакууме, иногда с водяным паром, на высококипящие фракции и на неперегоняющиеся тяжелые остатки. На рис. 1 рядом с названием фракции указан нижний предел ее кипения; в последней колонне давление при указанных температурах равно 50 - 75 мм рт. ст.

Продуктами первичной перегонки сырой нефти, как и следовало ожидать при принятом способе ее осуществления, являются смеси углеводородов. Индивидуальные простейшие углеводороды, присутствующие в первых фракциях, можно выделить, лишь используя более усовершенствованные методы ректификации.

Температуры кипения низших парафинов, нафтенов и ароматических углеводородов помещены в приложении. Большинство из перечисленных в приложении углеводородов уже было обнаружено в тех или иных образцах сырой нефти. Производные циклопропана и циклобутана не включены в это приложение, поскольку нет никаких доказательств их присутствия в сырой нефти и, следовательно, в каком-либо продукте ее переработки.

Все низшие парафины до пентанов включительно можно отделить друг от друга фракционированной разгонкой. В случае углеводородов с шестью или более атомами углерода число изомеров быстро увеличивается с увеличением молекулярного веса; ввиду этого, а также в связи с присутствием среди углеводородов с шестью и более атомами углерода, помимо парафинов, также нафтеновых и ароматических углеводородов простая перегонка становится неэффективной. Следует особо подчеркнуть, что выделение высших членов гомологических рядов углеводородов простыми физическими средствами почти невозможно из-за большого числа изомеров. Таким образом, углеводороды сложного строения приходится синтезировать из более простых; это одна из причин, определяющих важное значение низших парафинов и олефинов для промышленности химической переработки нефти. Число возможных изомеров в трех рассматриваемых рядах углеводородов (не считая геометрических изомеров) указано в табл. 9.

К-во Просмотров: 392
Бесплатно скачать Курсовая работа: Углеводородный состав прямогонных бензинов