Курсовая работа: Управляемый выпрямитель для электродвигателя постоянного тока тиристорного электропривода. Преобразователь частоты с автономным инвертором для электропитания асинхронного двигателя
Строим кривые мгновенных значений фазных U и U на выходе тиристорной группы при
Глава 2. Расчет двухзвенного преобразователя частоты для частотно-регулируемого электропривода перекачки жидкости
2.1 Описание электрической схемы электропривода
Схема приведена в конце курсового проекта. Приложение 2
Основные элементы, входящие в Функциональную электрическую схему асинхронного ЭП с ПЧ: UZ – неуправляемый выпрямитель; L0, Со – фильтр; RT – термистор, ограничивающий ток заряда конденсатора С0; R0 – разрядное сопротивление для конденсатора Со, FU1, FU2 – предохранители; R, С – цепь защиты (снаббер) от перенапряжений на ключах IGBT; RS – датчик тока для организации защиты (FA) от сквозных и недопустимых токов перегрузки через IGBT; VT – VD – интегрированный трехфазный инвертор на IGBT с обратным диодным мостом.
Основные блоки в системе управления:
- блок питания, содержащий восемь развязанных между собой источников напряжения;
- микроконтроллер AD на базе сигнального процессора 1899BE1;
- плата индикации DS с переключателем способа управления местное / дистанционное;
- блок сопряжения ТВ по работе с внешними сигналами или командами;
- согласующие усилители UD – драйверы IGBT.
2.2 Структура и принцип действия преобразователя частоты с промежуточным звеном постоянного тока
В преобразователе применена наиболее распространенная для управления асинхронным короткозамкнутым двигателем схема ПЧ с автономным инвертором напряжения (АИН) с широтно-импульсной модуляцией (ШИМ) напряжения на выходе и неуправляемым выпрямителем на входе силовой части схемы и микропроцессорным управлением. При питании от сети 380 В наиболее рациональным является применение в инверторе полупроводниковых вентилей нового поколения – биполярных транзисторов с изолированным затвором IGBT.
Основные элементы, входящие в схему (2): UZ – неуправляемый выпрямитель; L0, Со – фильтр; RT – термистор, ограничивающий ток заряда конденсатора С0; R0 – разрядное сопротивление для конденсатора Со, FU1, FU2 – предохранители; R, С – цепь защиты (снаббер) от перенапряжений на ключах IGBT; RS – датчик тока для организации защиты (FA) от сквозных и недопустимых токов перегрузки через IGBT; VT – VD – интегрированный трехфазный инвертор на IGBT с обратным диодным мостом.
Основные блоки в системе управления:
- блок питания, содержащий восемь развязанных между собой источников напряжения;
- микроконтроллер AD на базе сигнального процессора 1899BE1;
- плата индикации DS с переключателем способа управления местное / дистанционное;
- блок сопряжения ТВ по работе с внешними сигналами или командами;
- согласующие усилители UD – драйверы IGBT.
Работает электропривод следующим образом. При подаче силового напряжения 380В на вход выпрямителя UZ в звене постоянного тока происходит процесс заряда конденсатора фильтра C0 , который определяется величинами L0 , C0 . Одновременно с этим в информационную часть схемы подается питание (напряжения U1 – U8 ). В процессе выдержки времени на установление напряжений стабилизированных источников питания U1 – U4 аппаратная защита FA блокирует открывание ключей инвертора и происходит запуск программы управления процессором по аппаратно-формируемой команде "Рестарт". Выполняется предустановка ряда ячеек ОЗУ процессора (установка начальных условий), определяется способ управления "Местное/Дистанционное", "по умолчанию" устанавливается режим работы "Подача" (Q). Если с датчиков тока фаз двигателя ТАА – ТАС, аппаратной защиты FA, напряжения сети Uс поступает информация о нормальных параметрах, то привод готов к работе, на цифровой индикатор выводятся нули, светится светодиод "Подача". В противном случае загорается светодиод "Авария" и на цифровом индикаторе появляется код срабатывания той или иной защиты.
Для управления двигателем процессор формирует систему трехфазных синусоидальных напряжений, изменяемых по частоте и амплитуде, и передает их в модулятор, в котором синусоидальные сигналы управления фазами – “стойками” инвертора, состоящими из последовательно включенных ключей IGBT, преобразуются в дискретные команды включения и отключения транзисторов классическим методом центрированной синусоидальной ШИМ. Несущая частота ШИМ составляет от 5 кГц до 15 кГц.
Методика расчета приводится для ПЧ с АИН (рис. 7.2), выполненного на гибридных модулях, состоящих из ключей IGBT и обратных диодов FWD, смонтированных в одном корпусе на общей тепловыводящей пластине.
2.3 Расчёт инвертора
Максимальный ток через ключи инвертора определяется из выражения:
(2.1)