Курсовая работа: Усилитель низкой частоты для переносной магнитолы
- можно значительно улучшить качество сигнала путем правильного подбора компонентов.
Недостатки:
- тяжело подобрать транзисторы (особенно при использовании транзисторов разной полярности) с характеристиками, близкими на всем диапазоне значений выходного сигнала, это приводит к значительному усложнению схемы;
- бестрансформаторную схему нельзя приспособить к широкому диапазону нагрузок.
Таким образом, трансформаторный каскад усиления мощности лучше бестрансформаторного, так как он обеспечивает наилучшее согласование нагрузки с выходным сопротивлением усилителя, и цепь нагрузки изолируется от действующих в цепях усилителя постоянных напряжений.
1.4 Описание схемы электрической принципиальной
Схема электрическая принципиальная усилителя низкой частоты переносной магнитолы представлена на чертеже ПК 200108.316.23.10 Э3.
Входной низкочастотный сигнал поступает на вход усилителя низкой частоты и далее через разделительный конденсатор С1 на вход каскада предварительного усиления, собранного на транзисторе VT1 по схеме с общим эмиттером. Этот каскад обладает большим коэффициентом усиления как по току, так и по напряжению, что очень важно для входного каскада. Входное сопротивление каскада с общим эмиттером определяется крутизной вольт – амперной характеристики транзистора, поэтому выбираем в первом каскаде транзистор КТ3107Д с большим коэффициентом усиления и малыми собственными шумами.
Напряжение смещения на базе транзистора VT1 снимается с делителя R1, R2. Резистор R4 служит для стабилизации рабочей точки транзистора при изменении температуры окружающей среды. Конденсатор С4 - блокировочный. Он шунтирует резистор R4 по переменному току и тем самым предотвращает снижение коэффициента усиления каскада по напряжению.
Цепочка R5 С2 выполняет роль фильтра низких частот по цепи питания каскада предварительного усиления и не пропускает сигналы свыше частоты 80 Гц.
Без этого фильтра усилитель низкой частоты склонен к самовозбуждению, то есть усилитель может стать генератором низкой частоты и следовательно не выполнять свои функции.
Нагрузкой каскада предварительного усиления служит резистор R3. с него через разделительный конденсатор С3 усиленный сигнал поступает на вход предоконечного каскада, выполненного также по схеме с общим эмиттером на транзисторе VT2. Резисторы R6, R7, R9 обеспечивают начальное смещение и термостабилизацию схемы. Конденсатор С5 необходим для устранения обратной связи по переменному току. Резистор R8 выполняет роль нагрузки предоконечного каскада.
Усиленный по мощности сигнал с выхода предоконечного каскада поступает на вход двухтактного оконечного каскада, собранного на комплементарной паре транзисторов VT3, VT4 разной проводимости, но с одинаковыми параметрами, по схеме сообщим коллектором.
Такая схема применяется при значениях выходной мощности порядка нескольких ватт. Работает каскад в режиме класса В. Его достоинства: простота, высокий КПД, небольшой коэффициент гармоник, хорошее согласование с низкоомной нагрузкой.
Усиленный по мощности низкочастотный сигнал с выхода оконечного каскада далее поступает через разделительный конденсатор С6 в нагрузку, которой является головка динамическая.
2. Расчет элементов схемы электрической принципиальной
2.1 Расчёт оконечного каскада
1. Определяем колебательную мощность, отдаваемую каскадом по формуле:
,
где - мощность в нагрузке, , - КПД трансформатора, принимаем равным 0,7:
.
2. Определив отдаваемую каскадом мощность, можно выбрать тип транзистора. В данном случае это транзистор типа КТ816А с параметрами: , , , .
3. Определяем допустимое напряжение на коллекторе транзистора по формуле:
,
где - максимально допустимое значение напряжения на коллекторе транзистора, ,
.
4. Определяем величину импульса тока в коллекторной цепи по формуле:
,
.