Курсовая работа: Установление режима работы ШСНУ с учетом влияния деформации штанг и труб для скважины №796 Серафимовского месторождения
1,2; 4,5
1,8 – 4,5
1,8 – 4,5
Таблица 10
Техническая характеристика станков-качалок
Показатели | СК3-1,2-630 | СК5-3-2500 | СК10-3-5600 | СКД3-1,5-710 | СКД6-2,5-2800 | СКД12-3,0-5600 |
Номинальная нагрузка (на устьевом штоке), кН | 30 | 50 | 100 | 30 | 60 | 120 |
Номинальная длина хода устьевого штока, м | 1,2 | 3,0 | 3,0 | 1,5 | 2,5 | 3,0 |
Номинальный крутящий момент (на выходном валу редуктора), кН м | 6,3 | 25 | 56 | 7,1 | 28 | 56 |
Число ходов балансира в минуту | 5 - 15 | 5 - 15 | 5 - 12 | 5 - 15 | 5 - 14 | 5 - 12 |
Редуктор | Ц2НШ-315 | Ц2НШ-450 | Ц2НШ- 560 | Ц2НШ-315 | Ц2НШ-450 | Ц2НШ- 560 |
Габаритные размеры, мм, не более: Длина Ширина Высота | 4125 1350 3245 | 7380 1840 5195 | 7950 2246 5835 | 4050 1360 2785 | 6085 1880 4230 | 6900 2250 4910 |
Масса, кг | 3787 | 9500 | 14120 | 3270 | 7620 | 12065 |
В последние годы стали использоваться штанговые насосы с безвтулочным цилиндром. Их преимуществом является упрощение конструкции и сборки насоса. У таких цилиндров предусматривается большая толщина стенки, чем у кожуха насосов с втулочным цилиндром, что обеспечивает повышенную прочность их резьбы по сравнению с резьбой кожухов. Конструкция насосов с безвтулочным цилиндром аналогично конструкции насосов с втулочным цилиндром /3/.
2.2 Анализ эффективности эксплуатации ШСНУ в условиях ООО НГДУ “Октябрьскнефть”
Наличие большого количества скважин, эксплуатируемых УСШН различных типоразмеров, широкий диапазон условий эксплуатации, различные характеристики пластов и добываемых из них жидкостей позволили получить широкий спектр данных используемых при подборе оборудования в ООО НГДУ “Октябрьскнефть”.
Анализ предусматривает группировку скважин по ряду общих признаков, которые приведены в таблице 11.
Таблица 11
Дебит скважин по неф- ти, т/сут | Коли- чество сква- жин, шт | Распределение насосов по степени обводненности, % | Распределение насосов по глубине подвески насоса, м | Средняя глубина подвески, м. | |||||||
0-2 | 2-20 | 21-50 | 51-90 | 91-100 | 0- 700 | 701- 1000 | 1001- 1300 | 1301- 1500 | |||
0 –1 | 647 | 29 | 145 | 125 | 287 | 61 | - | 10 | 439 | 198 | 1261 |
1,1 – 5 | 507 | 18 | 214 | 142 | 128 | 5 | 2 | 18 | 385 | 102 | 1224 |
5,1 – 10 | 68 | 5 | 35 | 25 | 3 | - | - | 8 | 53 | 7 | 1182 |
10,1 – 20 | 14 | 1 | 10 | 2 | 1 | - | - | - | 14 | - | 1140 |
20,1 - 30 | 1 | - | - | - | - | - | - | - | 1 | - | 1016 |
Итого | 1237 | 53 | 404 | 295 | 414 | 66 | 2 | 36 | 892 | 307 | 1240 |
Таблица 12
Добыча жидкости различными видами насосов по ЦДНГ-1
Вид насоса | Количество, шт. | Добыча нефти, т. | Добыча жидкости, м3 |
НСВ1Б-28 | 1 | 104 | 173,4 |
НСВ1Б-29 | 20 | 4161 | 8772,8 |
НСВ1Б-32 | 247 | 90987,2 | 248758,5 |
НСН2Б-43 | 16 | 10229,1 | 61825,5 |
НСН2Б-44 | 33 | 35715,3 | 113040,5 |
НСН2Б-56 | 4 | 6518,9 | 30687,4 |
НСН2Б-57 | 3 | 3987,6 | 27740 |
Итого | 324 | 151703,1 | 490998,1 |
Наибольшее число штанговых насосов (62 %) имеет производительность по нефти до 1 т/сут. Около 95 % скважин эксплуатируется с содержанием воды до 90 %, 5 % - более 90 %. Основными глубинами подвесок насоса являются 1000-1300 м, (95 % скважин), наиболее распространенными являются насосы вставного типа – 82,7 %. Наземное оборудование скважин представлено в основном станками-качалками нормального ряда типа СКН5 – 31 %, СКД8 –15 % и 7СК8 – 29 %. Колонны штанг комплектуются двумя диаметрами штанг – 22 и
19 мм в соотношении 40 % и 60 %. Средняя величина погружения насосов под динамический уровень составляет более 300 м. что обеспечивает давление на приеме 2,5…3,0 МПа. Число ходов большинства станков-качалок поддерживается в пределах 5…6, длина хода полированного штока составляет 1,2 …2,5 м. /1/ . Основное применение в ЦДНГ-1 НГДУ “ОН” получили насосы вставного типа (НСВ) – 268 шт. На них ложится основная часть добычи нефти – 95252,2 т. из 151703,1 т. в год. Но если сравнить отдельно насосы, то из таблицы видно, что насосы типа НСН2Б-44 добывают в три раза меньше жидкости, чем НСВ1Б-32, но их в 7,5 раз меньше чем вставных. Это объясняется тем, что они применяются в мало обводненных скважинах, чем вставные и производительность невставных насосов выше чем вставных /3/.
3. Теория подбора оборудования и режима работы ШСНУ
3.1 Расчет потерь хода плунжера и длины хода полированного штока
Почти во всех скважинах фактическая производительность глубинно-насосных установок ниже расчетной, что обусловлено:
-упругим удлинением и сокращением штанг и труб;
-недостаточным заполнением жидкостью цилиндра насоса;
-изменение объемов нефти и воды;
-утечкой жидкости через клапаны насоса и неплотности в НКТ /4/.
При работе насоса колонны штанг и труб периодически подвергаются упругим деформациям от веса жидкости, действующей на плунжер. Кроме того, на колонну штанг действуют динамические нагрузки и силы трения, вследствие чего длина хода плунжера может существенно отличаться от длины хода полированного штока.
Силы, действующие на узлы ШСНУ, принято делить на статические и динамические по критерию динамического подобия (критерий Коши)
(3.1)
где a =4900-скорость звука в штанговой колонне, м/с; ω=2πn-частота вращения вала кривошипа, с-1 .
При μд ≤0,4 режим работы установки считается статическим, а при μд >0,4 режим работы – динамическим.
Для статических режимов силы инерции не оказывают практического влияния на длину хода плунжера, и длину хода полированного штока вычисляют по следующей формуле:
, (3.2)
где - сумма упругих деформаций штанг λш и труб λт , вызванных действием нагрузки от веса жидкости в НКТ. Они вычисляются по следующим формулам: