Курсовая работа: Устройства приема и обработки сигналов

Назначение входной цепи (ВЦ) – предварительная селекция и передача энергии полезного сигнала от антенны ко входу первого каскада с наименьшими потерями и искажениями. Вместе с фильтрами усилителя радиочастоты (УРЧ) ВЦ обеспечивает требуемую избирательность по зеркальному, прямому и другим побочным каналам приема. В диапазоне УКВ обычно применяют одноконтурные ВЦ в режиме оптимального согласования по шумам, в следствии получения максимальной чувствительности.

Назначение УРЧ – уменьшение коэффициента шума приемника, дополнительное подавление зеркального, прямого и других побочных каналов приема, усиление полезного сигнала. В каскадах УРЧ чаще всего применяют одноконтурные фильтры, а коэффициент усиления выбирают небольшим, чтобы избежать избыточного усиления мешающих сигналов, попадающих в полосу пропускания преселектора, которые могут быть причиной появления перекрестных и интермодуляционных искажений в следующем каскаде. Поэтому число каскадов УРЧ выбирают не больше одного – двух, а общий коэффициент усиления не более 5-10.

Назначение усилителя промежуточной частоты (УПЧ) – обеспечение избирательности приемника по соседним каналам приема и основного усиления приемника до детектора. Кроме того, фильтры УПЧ определяют полосу пропускания и форму АЧХ ВЧ тракта приемника.

1.2. Расчет полосы пропускания. Определение требований к системе АПЧ

Характеристики радиоприемника должны быть в возможно большей степени согласованы с характеристиками спектра принимаемого сигнала. Полоса пропускания, форма АЧХ и ФЧХ в пределах полосы и прилегающих областях должны удовлетворять требованиям сохранения параметров сигнала в пределах допустимых искажений.

Для радиовещательных приемников обычно считается допустимой подстройка при приеме, при этом полоса пропускания ВЧ тракта выбирается равной реальной ширине спектра принимаемого сигнала. Реальная ширина спектра сигнала Пс зависит как от вида модуляции, так и от вида передаваемого сигнала и определяется по формуле 1.2.1. [1] для частотно модулированных сигналов:

(1.2.1)
?? = 2 ∙F?∙(1+ m?? + √m??) = 2∙9000∙(1+4,4+√4,4) = 136∙103 ??

где FВ – максимальная частота в спектре модулирующего сигнала,

mчм – максимальное значение индекса частотной модуляции, определяемое по формуле 1.2.2.

(1.2.2)
m?? = ∆fm / F? = 40∙103 / 9∙103 = 4,4

где ∆fm – девиация частоты.

Полосу пропускания ВЧ тракта обычно стремятся уменьшить до минимально возможной, поскольку с уменьшением полосы повышается чувствительность и избирательность приемника, но при этом соответственно повышаются требования к стабильности частоты гетеродинов. Для разрешения этого противоречия в относительно несложных приемниках используют систему АПЧ. В общем случае отклонение промежуточной частоты приемника за счет нестабильности частот определяется по 1.2.3:

(1.2.3)

где, δс и δг – относительные нестабильности несущей частоты принимаемого сигнала и частоты гетеродина приемника, для радиовещания δс= δг= 10-6,

δн=10-3 - погрешность настройки приемника по шкале,

δпр= 3∙10-3 - относительная погрешность и нестабильность промежуточной частоты приемника,

fc= 78∙106 Гц - максимальная частота диапазона принимаемых сигналов,

fг= 88.7∙106 Гц - максимальная частота гетеродина,

fпр= 10,7∙106 Гц - значение промежуточной частоты приемника.

Для исключения ухудшения качества приема полосу пропускания приемника выбирают шире реальной ширины спектра сигналов на ∆fзап = 2∆fпр = 188,6∙103 Гц, то его можно существенно уменьшить, используя систему автоматической подстройки частоты гетеродина; требуемая полоса приемника при этом соответственно уменьшится, 1.2.4.

(1.2.4)
? = ?? + 2∆f?? / ???? = 136∙103 + 188,6∙103 / 5 =173∙103 ??

где Капч=5 – коэффициент АПЧ.

1.3. Выбор промежуточной частоты

Сложность принципиальной схемы и конструкции супергетеродинного приемника в значительной мере зависят от правильного выбора промежуточной частоты (ПЧ). ПЧ выбирают вне диапазона принимаемых частот, по возможности удаляют от границ поддиапазонов и от частот, на которых работают мощные радиостанции. При более высокой ПЧ легче обеспечить необходимую избирательность по зеркальному каналу. При более низкой ПЧ легче получить узкую полосу пропускания приемника и высокую избирательность по соседнему каналу при конструктивно осуществимых затуханиях контуров.

При определении значения промежуточной частоты будем руководствоваться значением избирательности по зеркальному каналу и выбранным типом транзистора. В качестве транзистора был выбран биполярный. Поэтому промежуточная частота рассчитывается по 1.3.1. для преселектора из двух контуров.

(1.3.1)
f?? = 0,25∙ d?∙ fmax ∙2√σ? ∙ (1 + (q?) 2) = 0,25∙0,025∙78∙106 ∙ 2√56∙(1+(1) 2) = 9,8∙106 ??

где dэ = 1/Qэ =0,025, где Qэ =Qк/q = 100/2.5. = 40 – реально достижимая эквивалентная добротность контура ВЦ,

Qк = 100 – конструктивная добротность,

q = 2,5 – коэффициент шунтирования контуров транзисторами,

fmax = 78∙106 Гц – максимальная частота диапазона,

qр = 1 – параметр рассогласования антеннофидерной системы и входа ВЦ,

σз = 56 – избирательность по зеркальному каналу, заданная в ТЗ.

Полученное значение близко к 10,7∙106 Гц из ряда стандартизированных значений промежуточной частоты, поэтому в качестве промежуточной частоты можно выбрать значение fпр=10,7∙106 Гц.

1.4. Выбор схемы преселектора по требованиям к чувствительности

При выборе структуры и усиления преселектора супергетеродинного приемника исходят из требований к реальной чувствительности, многосигнальной избирательности и условий работы приемника – характера и уровня помех в диапазоне принимаемых частот. В диапазонах ДВ и СВ и нижней части КВ чувствительность приемников ограничена внешними помехами естественного и промышленного происхождения. На более высоких частотах уровень внешних помех уменьшается и становится соизмеримым с уровнем собственных шумов приемника. В диапазоне УКВ коэффициент шума Fш. доп определяется по формуле 1.4.1.

(1.4.1)

где Е = 16∙10-6 В – реальная чувствительность, заданная в ТЗ,

k =1,38∙10-23 Дж/град – постоянная Больцмана,

К-во Просмотров: 607
Бесплатно скачать Курсовая работа: Устройства приема и обработки сигналов