Курсовая работа: Вероятность и правдоподобные рассуждения

Рузавин Г.И.

К правдоподобным принято относить рассуждения, заключения которых подтверждаются посылками с той или иной степенью вероятности. Поэтому их называют также вероятностными рассуждениями. Наиболее знакомыми их видами являются индуктивные умозаключения традиционной логики, а также статистические рассуждения. Как нетрудно заметить, характерной чертой правдоподобных рассуждений, отличающей их от достоверных, демонстративных умозаключений дедуктивной логики, является недостоверность. Такое чисто негативное определение требует подходящей экспликации термина “недостоверность”, которая обычно осуществляется с помощью категории “вероятность”. Если будет найдена адекватная экспликация недостоверности, фигурирующей в правдоподобных рассуждениях, тогда можно было бы говорить об эффективном использовании понятий и методов теории вероятностей для анализа структуры и результатов рассуждений, которые в традиционной логике относились к недедуктивным. Поскольку доминирующую роль среди них играла индукция, то часто они отождествлялись с индуктивными рассуждениями. Даже в современной логике нередко к индуктивным рассуждениям в широком значении этого термина относят все вероятностные рассуждения, как это делает, например, Р.Карнап в своих “Логических основаниях вероятности” (Carnap R. The logical foundations of Probability. 2 ed. Chicago, 1962).

Главная трудность, с которой мы сталкиваемся при современном анализе правдоподобных рассуждений, состоит в том, чтобы найти адекватную экспликацию их структуры и результатов с помощью подходящей интерпретации понятий и исчисления вероятности. В настоящее время существует множество различных интерпретаций понятия вероятности. Наиболее часто используемой интерпретацией, широко применяемой в естествознании, социально-экономических и технических науках является частотная, или статистическая, интерпретация, которую также называют объективной. Многие логики, однако, сомневаются, может ли она адекватно отобразить отношения между высказываниями об отдельных событиях, которые по самому их смыслу не обладают частотой. Тем не менее, в 20-е годы Г.Рейхенбахом была предпринята попытка представить вероятность отдельных событий через так называемую фиктивную частоту и даже построить специфическую вероятностную логику. Однако ни псевдочастотная интерпретация вероятности индивидуальных событий, ни вероятностная логика, основанная на тех же идеях, в дальнейшем не получили развития. Одни исследователи стали трактовать вероятность таких событий либо в чисто психологических терминах, либо в понятиях рациональной веры. Вероятностная же логика стала строиться по аналогии с дедуктивной логикой, а именно вероятностное отношение между высказываниями стали рассматривать как специфическое логическое отношение, мерой которой служит степень подтверждения одного высказывания другими, например, гипотезы ее эмпирическими данными. Но на этом пути возникли большие трудности, в особенности при оценке степени вероятности заключений. А все это свидетельствовало о том, что практическое применение идей вероятностной логики требует не только чисто объективного рассмотрения логического отношения между высказываниями, но и субъективных аспектов тех вероятностных суждений, с которыми оперируют в этой логике.

В предлагаемой обзорной статье я попытаюсь показать, в какой мере существующие интерпретации вероятности могут подойти для анализа многочисленных правдоподобных рассуждений, среди которых главное значение для практики имеют прежде всего индуктивные умозаключения и статистические выводы. Последние, правда, требуют также привлечения не только логической, но и частотной интерпретации.

1. Частотный подход к вероятности и ее законам

1.1. С самой общей, философской точки зрения вероятность связана и опирается на категорию возможности. Поэтому ее нередко определяют как количественную меру возможности появления случайного события. Речь в данном случае идет о случайных событиях потому, что необходимые события неизбежно происходят в силу существующей закономерности, но чисто формально можно было не делать такой спецификации, поскольку необходимость можно рассматривать как практическую достоверность. Очевидно, что подобная общая мера может быть установлена прежде всего для повторяющихся, массовых, а не индивидуальных событий, независимо от того выражается ли она в метрических терминах (т.е. выражена с помощью числа) или же сравнительных терминах (т.е. выражена с помощью отношений: “больше”, “меньше” или “равно”). По сути дела, такой взгляд на вероятность высказывал еще Аристотель, хотя сама теория вероятности возникла из анализа азартных игр и опиралась на иное истолкование вероятности как отношения благоприятствующих шансов к числу всех равновозможных. Оказалось, однако, что такой подход был весьма ограниченным, поскольку опирался на существование равновозможных альтернатив или шансов. Но в реальном мире лишь небольшая часть шансов являются равновозможными, а в азартных играх правила построены так, чтобы с самого начала постулировать равенство шансов для игроков. Поэтому впоследствии классическая интерпретация вероятности уступила место более общей частотной интерпретации.

1.2. Обычно такую интерпретацию характеризуют как объективную, так как ее определение основывается на реальных наблюдениях частоты появления тех или иных массовых случайных событий и потому не зависит от индивидуальной психологической или даже рациональной веры наблюдателя. Возникает законный вопрос: а что лежит в основе появления самих частот? Почему мы считаем, что результаты наблюдения не зависят от наблюдателя и средств его наблюдения и измерения? В последние годы на эти вопросы попытались ответить сторонники так называемой пропенситивной концепции, которые считают, что реализация определенных частот зависит от пропенситивности, или предрасположенности соответствующей системы массового случайного характера. Именно эта предрасположенность находит свое проявление или выражение в частоте появления событий.

1.3. Какая же внутренняя связь существует между частотой появления события и его вероятностью?

С интуитивной точки зрения ясно, что чем чаще появляется событие, тем выше его вероятность. На этом очевидном представлении основывается количественное измерение вероятности массовых случайных событий. Для этого, как известно, необходимо провести достаточно большое – определенное условиями задачи – количество независимых испытаний n. Если при этом окажется, что интересующее нас событие появляется m раз, то относительная частота его появления выразится правильной дробью:

n / m

Очевидно, что относительная частота представляет собой эмпирическое понятие, ибо она определяется с помощью непосредственных наблюдений и измерений. В каждом серьезном исследовании для этого необходимо располагать соответствующей статистикой, которая упорядочивает и анализирует результаты наблюдений и испытаний. Поэтому частотная интерпретация называется также статистической и, пожалуй, это название встречается чаще, чем частотное.

1.4. В отличие от понятия эмпирической относительной частоты и его эквивалента статистической частоты само понятие вероятности носит теоретический характер и поэтому не может быть непосредственно сведено, а тем более отождествлено с любым релевантным эмпирическим понятием. Некоторые исследователи выход из возникшей трудности находят в идеализации процесса нахождения относительной частоты массового случайного или повторяющегося события. В этих целях предполагается, что процесс может продолжаться неограниченно долго и относительная частота определяется именно для бесконечного количества независимых испытаний. Если обозначить вероятность массового события через P(A), то она может быть выражена формулой:

P(A) = lim n (при n -> ∞)

где m - обозначает число появлений интересующего нас события A, в предположении, что число n независимых испытаний стремится к бесконечности. Такой предельный подход к определению частотной вероятности был использован сначала Р.Мизесом (Mises R. Probability, Statistics and Thruth. N.Y., 1957), а затем более детально Г.Рейхенбахом (Reichenbach H. The theory of probability. Los-Angeles, 1949). Хотя Мизеса и Рейхенбаха критиковали их единомышленники неопозитивисты за отход от принципов эмпиризма, тем не менее подобные переходы от эмпирических понятий к теоретическим весьма часто применяются в теоретическом естествознании, например, когда определяют понятие мгновенной скорости в данной точке через среднюю скорость с использованием предельного перехода.

Однако главное острие критиков было направлено не столько против обоснованности такой идеализации, сколько практической нереализуемости определения значения вероятности. Статистики, благожелательно воспринявшие частотную интерпретацию, заявляли, что вероятность события должна определяться каждый раз по отношению к такому классу испытаний, который достаточен для решения поставленной проблемы. Поэтому, начиная с Г.Крамера, вероятность в статистике начали рассматривать как двойник относительной частоты (Крамер Г. Математические методы статистики. М., 1948). Другими словами, вместо того, чтобы определять вероятность как предел относительной частоты события при неограниченных испытаниях, ее стали сводить – хотя и не отождествлять – с относительной частотой при достаточно длительных наблюдениях, обусловленных характером поставленной проблемы.

Для прекращения дискуссий о характере понятия вероятности математики прибегли к своему излюбленному аксиоматическому методу. В соответствии с ним все формальные свойства понятия вероятности, необходимые для выведения следствий из аксиом, точно перечисляются в аксиомах. Вопрос же о применении этих аксиом в конкретных областях исследования решается практически путем надлежащей их интерпретации. Если раньше Р.Мизес настойчиво доказывал, что теория вероятностей является естественнонаучной дисциплиной, подобной, например, теоретической механике, то после ее аксиоматизации она стала равноправной математической дисциплиной. В общепринятой теперь стандартной аксиоматике А.Н.Колмогорова (Колмогоров А.Н. Основные понятия теории вероятностей. 2-е изд. М.: Наука, 1950) понятие вероятности было связано с понятием меры, и тем самым эта теория получила теоретико-множественное обоснование. Но это обстоятельство не остановило поисков адекватной интерпретации для таких вероятностных суждений, которые трудно или вообще не поддаются частотной интерпретации. К их числу относятся прежде всего вероятностные суждения об отдельных событиях. Р.Мизес считал, что поскольку такие события не обладают относительной частотой, то частотная интерпретация к ним в принципе неприменима. В отличие от него Г.Рейхенбах пытался интерпретировать их с помощью довольно неопределенного термина “фиктивной частоты”. При ближайшем рассмотрении такая частота оказывается связанной с тем значением вероятности, которое сторонники субъективистского направления приписывают той вере, которая может быть подтверждена некоторыми действиями субъекта, например, с помощью измерения его ставок в азартных играх и иных действий. Вероятностное утверждение об отдельном событии нельзя характеризовать как истинное или ложное. Поэтому само оно, по мнению, Рейхенбаха, не является утверждением в общепринятом смысле слова, а только постулатом или предположением (posit). Такое предположение, пишет он, “есть утверждение, с которым мы обращаемся как с истиной, хотя истинностное значение его остается неизвестным” (3, p. 373). Обращение к “фиктивной частоте” более ясно видно при определении вероятности отдельных событий в будущем. Если возникает вопрос, например, о вероятности дождя на будущий день, смерти от туберкулеза определенного больного, видов на урожай в определенном районе и т.п., то фактически мы оцениваем такие события не по их относительной частоте, а частоте того ближайшего референтного класса, к которому можно отнести рассматриваемые события. Так для предсказания дождя в определенном месте и в определенное время необходимо располагать статистическими данными наблюдения погоды в данном месте за несколько лет. Очевидно, чем уже будет такой класс референции, тем точнее будут наши предсказания. Необходимо, однако, ясно отдавать себе отчет, что вероятностные суждения и основанные на них предсказания во всех таких случаях опираются не на действительные наблюдения относительных частот, а частот фиктивных, относящихся к ближайшему классу референции. В ряде случаев такой класс референции действительно можно обнаружить, но нередко определение вероятности сопряжено с немалыми трудностями. Тем более, что сам Рейхенбах признает, что “существует только одно легитимное понятие вероятности, которое относится к классам, а псевдопонятие вероятности отдельного случая должно быть заменено конструкцией, построенной с помощью вероятностного класса” (3, p. 375). Вряд ли, однако, можно согласиться с ним, что такая реконструкция возможна для оценки вероятности таких исторических событий, как вероятность пребывания Цезаря в Британии. Ссылка на статистический анализ исторических хроник в силу ненадежности самих хроник мало чем может здесь помочь (3, p. 380).

2. Вероятностная логика Рейхенбаха

Частотный подход Рейхенбах использовал также для построения вероятностной логики. По его замыслу такая логика должна стать обобщением классической дедуктивной логики, которая оперирует с двумя истинностными значениями высказываний. Поскольку вероятности определены на непрерывной шкале значений численного сегмента от 0 до 1, постольку степени вероятности можно рассматривать как степени истинности соответствующих вероятностных высказываний. Многие критиковали Рейхенбаха за сведение понятия истинности к понятию вероятности, но он сохраняет это понятие для математических утверждений и поэтому возражает против того, чтобы рассматривать, например, теорему Пифагора как вероятностное заключение, полученное из эмпирического опыта. По-видимому, степени истинности, которые он анализирует в своей логике, являются аналогами степеней достоверности, с которыми исследователь сталкивается при поиске истины. С такой точки зрения вероятность, равную единице, можно считать практической достоверностью, а равную нулю – невозможностью.

Из вероятностной шкалы можно получить все дискретные шкалы истинностных значений, в том числе многозначной и двузначной логики. Но, как мы видели, такой чисто формальный подход наталкивается на трудности; истинностные значения в различных многозначных и двузначной логике истолковываются по-разному. В связи с этим аналогия между неевклидовой геометрией и евклидовой, с одной стороны, и вероятностной логикой и классической двузначной, с другой, на которую указывает Рейхенбах, выглядит не очень убедительно (3, p. 397).

Что касается характера самой вероятностной логики, то она выступает как метаязык по отношению к объектному языку. Если аксиомы частотной вероятности отображают весьма общие, формальные свойства массовых случайных событий и выражаются на предметном, или объектном, языке, то высказывания о них формулируются на языке более высокого уровня, т.е. метаязыке. С таким подходом мы встречаемся уже у Д.Буля, но Рейхенбах напрямую говорит об изоморфизме двух упомянутых языков. Логическая вероятность при таком подходе должна строиться на основе рассмотрения последовательности логических высказываний, подобно тому как объектная выступает как последовательность массовых событий. Однако практическое значение логической интерпретации вероятности, указывает Рейхенбах, возникает из ее применения к отдельному случаю, поскольку при таком применении вероятность выступает в функции заменителя истинностного значения (3, p. 380). Поскольку вероятностное высказывание об отдельном событии можно рассматривать как предположение, постольку Рейхенбах для определения истинностного значения такого предположения использует термин “вес” (3, p. 378). Таким образом, вероятностная логика при таком подходе превращается в логику взвешенных предположений. Нельзя не отметить, что интуитивно мы нередко прибегаем к оценке своих предположений. Опытный практик часто делает краткосрочный прогноз точнее, чем метеоролог, опирающийся на принципы статистической вероятности. Все же взвешенные предположения, основанные на статистическом анализе систематических наблюдений, оказываются в целом более надежными для более длительных прогнозов. Объясняется это тем, что для краткосрочных прогнозов определенного места и времени важнее иметь информацию о конкретных условиях, с которыми связана погода, чем знать общую статистическую вероятность о состоянии погоды за более продолжительный период времени. Но сужая класс референции, увеличивая число и периодичность наблюдений, можно добиваться возрастания надежности и точности прогнозов. Попытка Рейхенбаха учесть в своей логике роль частотной, статистической интерпретации для оценки вероятности отдельных событий посредством взвешенных предположений приобретает особое значение, если мы опираемся на вероятность как руководство в жизни. Двузначная логика слишком грубый инструмент для анализа весьма сложных явлений, с которыми мы встречаемся не только в науке, но и в практической жизни.

Исследование и поиск всегда начинаются с выдвижения какой-либо проблемы, задачи или вопроса. Чтобы решить или ответить на них, необходимо взвесить то или иное предположение, принимающее в науке форму гипотезы, а в повседневной практике догадки. Хотя логическая формулировка, уточнение и критический анализ гипотезы неизбежно связаны с определенными упрощениями, вероятностная их оценка оказывается более адекватной к сущности дела, чем оценка в терминах двузначной или дискретной многозначной логики.

Для нас вероятностная логика Рейхенбаха интересна не столько с точки зрения техники ее построения, сколько попытки ее применения к решению научных и практических задач. Действительно, строится она по аналогии с классической двузначной математической логикой. Сначала определяется непрерывная шкала значений степеней достоверности, крайние значения которой соответствуют – или скорей аналогичны – истине и лжи обычной логики (т.е. 1 и 0). Между ними располагаются все промежуточные значения, которые для простоты могут быть выражены рациональными дробями. Затем устанавливаются основные операции над элементарными вероятностными высказываниями и для них строится соответствующая таблица весов предположений, аналогичная таблице истинности пропозициональной логики. Определяются также тавтологии вероятностной логики, словом – строится продуманный аналог двузначной логики. Оправдание своей логики автор видит в том, что из нее при соответствующей спецификации выводятся известные нам законы пропозициональной логики. Создается, однако, впечатление, что вся сложная машинерия, связанная с частотной интерпретацией вероятности, оказывается вряд ли так уже необходимой, если для логической интерпретации приходится обращаться к таким фикциям, как “фиктивные частоты”. По-видимому, это обстоятельство до Рейхенбаха ясно осознал один из пионеров логической интерпретации Д.М.Кейнс, который стал рассматривать эту вероятность как чисто логическое отношение между высказываниями, наподобие отношения логической дедукции классической логики.

По-видимому, главное значение исследований Рейхенбаха по вероятностной логике состоит в их прагматической ориентации. И здесь он высказал немало ценных идей, относящихся к вероятностному обоснованию индукции.

Речь идет, конечно, не столько о философском обосновании в том традиционном духе, в котором пытались это сделать Д.С.Милль и другие, сколько обосновании прагматическом, т.е. путем оправдания индукции с помощью вероятностных методов. “Логик наших дней, – писал он, – который осознает ошибочность философии рационализма, отклоняет всякую попытку построения индуктивной логики из чистого разума” (3, p. 433). Поэтому Рейхенбах утверждает, что “исчисление вероятностей содержит в себе ключ к теории индукции в развитом знании” (3, p. 432).

Анализируя методы традиционной индукции Бэкона и Милля, он считает, что они, по сути дела, являются более усовершенствованными способами известной еще Аристотелю индукции путем перечисления случаев, подтверждающих общее заключение. Действительно, Ф.Бэкон, предпринимая свое построение “Нового Органона”, исходил из того факта, что такая индукция является наиболее простым и потому слабым методом получения умозаключений. Систематизируя выдвинутые Бэконом приемы индуктивных рассуждений, Д.С.Милль два столетия спустя лишь уточнил, исправил их, а также добавил к ним несколько новых, но в принципе придерживался той же линии исследования. Последняя заключалась в том, чтобы дополнить индукцию дедукцией в тех приемах рассуждения, когда приходилось опровергать неправдоподобные индуктивные обобщения путем приведения отрицательных примеров. Если вспомнить характер рассуждений в методе отсутствия Бэкона и методе различия Милля, то нетрудно заметить, что в них опровержение индуктивного обобщения осуществляется по классическому дедуктивному правилу modus tollens: (x) (Ax ® Bx) (Ex) u (Ax ® Bx), где по отрицанию следствия делается вывод о несостоятельности обобщения.

Статистическая, или частотная, интерпретация вероятности позволяет дополнить и уточнить правдоподобность классических методов индукции путем обращения к закону больших чисел и построения репрезентативной выборки. В своих таблицах присутствия Бэкон и методе сходства Милль всегда подчеркивают необходимость увеличения числа случаев, подтверждающих заключение, т.е. неявно апеллируют к закону больших чисел. При этом, однако, дело не сводится к простому накоплению подтверждающих случаев, поскольку, чем больше будут отличаться такие случаи друг от друга, тем вероятнее доверие к индуктивному умозаключению. При статистическом подходе к индукции следует говорить о репрезентативности выборки из совокупности имеющихся данных. Термин “репрезентативность” отражает то бесспорное требование к выборке, чтобы она не оказалась предвзятой, а отражала действительно верное распределение данных в статистическом коллективе. Требования разнообразия, которое интуитивно предполагалось создателями классической теории, выражает лишь одно из конкретных требований репрезентативности выборки, относящееся к выборке данных для индуктивного обобщения.

Сам Рейхенбах добавляет еще одно требование для правдоподобности индуктивных умозаключений, которое исключает выдвижение слишком поспешных заключений. Поясним это на примере неверного индуктивного обобщения часто встречающегося в качестве назидания во многих учебниках логики. Известно, что обобщение “все лебеди – белые” оказалось слишком поспешным и потому ошибочным после обнаружения черных лебедей в Австралии. Его несостоятельность, однако, можно было установить до установления противоречащего примера. В этих целях следует использовать прием перекрестной индукции, заключающийся в сравнении последовательности случаев, которые пересекаются друг с другом. Если, скажем, в рамках одного вида птиц окраска их перьев не меняется, то рассматривая разные виды птиц, можно убедиться в противоположном. Поэтому вряд ли вероятно, что обобщение, сделано на наблюдении одного вида и притом ограниченного количества птиц, окажется правдоподобным. А если еще учесть зависимость окраски перьев птиц от условий места обитания, климата, питания и т.п. условий, то заключение кажется еще менее правдоподобным.

В отличие от методов классической индукции, которые применяются в повседневных рассуждениях или на эмпирической стадии научного исследования, в развитых науках чаще всего используют особую форму индукции, получившую название объяснительной. Ее отличие от классической заключается в том, что она опирается не только на непосредственные эмпирические данные, подтверждающие индуктивное обобщение, но и те ранее известные знания, с которыми связано это обобщение. Поэтому и подтверждающие факты обобщения и ранее известное знание служат здесь для объяснения имеющихся и новых данных. В этих целях наряду с чистой индукцией исследователь обращается к выводу из обобщений известных фактов, и тем самым дает им логическое объяснение. Другая характерная особенность научной индукции заключается в том, что она, как правило, входит в определенную систему научного знания, так что ее заключение обосновывается не только теми фактами, которые относятся к ней непосредственно, но и косвенно.

Если рассматривать индуктивное обобщение как гипотезу, то вся совокупность взаимосвязанных обобщений будет представлять собой гипотетико-дедуктивную систему. В такой системе каждое индуктивное обобщение или гипотеза будет логически связана с другой, поэтому подтверждающие ее данные будут служить косвенным подтверждением логически связанной с ней гипотезы и наоборот, данные последней будут подкреплять первую гипотезу. Рейхенбах, правда, выступает против термина “гипотетико-дедуктивный метод”, рассматривая его как умозаключение путем подтверждения изолированных гипотез. Но в настоящее время, по-видимому, никто не понимает этот метод в таком узком смысле. Напротив, он понимается именно в том смысле, в каком сам Рейхенбах определяет объяснительную индукцию, т.е. не как умозаключение, основанное на подтверждении изолированной гипотезы, а как “комбинацию вероятностных умозаключений” (3, p. 432).

Скорей всего, критика Рейхенбаха была направлена против того понимания индукции, которая была представлена Д.С.Миллем. Известно, что Милль рассматривал каноны индукции как правила нахождения и объяснения причинных зависимостей в природе. Однако с их помощью можно было устанавливать лишь простейшие связи между эмпирически наблюдаемыми свойствами явлений, которыми мы пользуемся в повседневных рассуждениях, часто даже не подозревая об этом. Главный же недостаток подобной объяснительной индукции заключается в том, что она применима лишь к отдельным, изолированным обобщениям, в то время как в научном познании имеют дело с системой взаимосвязанных обобщений, гипотез и иных форм познания. Действительно, если сопоставить каноны индукции Д.С.Милля, сформулированными в середине XIX в. с реальной практикой развития науки даже в предыдущем XVIII в., то выяснится полная их неадекватность. В самом деле, создавая свою теорию классической механики, Ньютон опирался не на изолированные индуктивные обобщения свойств механических явлений, а целую совокупность взаимосвязанных систем объяснения, воплощенных в теории свободного падения тел Галилея, а также теории движения планет солнечной систем Кеплера и некоторых других. Благодаря этому, например, его теория гравитации нашла подтверждение не только в непосредственных астрономических измерениях, но и в тех выводах, которые были сделаны на основе теорий Галилея и Кеплера. Более того, общая ньютоновская теория помогла исправить и уточнить результаты, полученные в упомянутых частных теориях.

В нашей учебной литературе нередко встречается термин “научная индукция”, но под последним чаще всего понимается умозаключение не только высокой степени вероятности, но почти достоверности. Бесспорно, подлинные индуктивные обобщения в науке обладают несравненно большей степенью вероятности, чем изолированные обобщения. Но при этом забывается, что такие объяснительные индуктивные обобщения опираются не только на факты, непосредственно их подтверждающие, но факты и знания, косвенно связанные с ней логическими отношениями. Следует, однако, не забывать, что высокая вероятность не тождественна достоверной истинности. Ведь универсальные обобщения, к которым, в частности, относятся научные законы не могут быть окончательно подтверждены любым конечным числом случаев и, следовательно, не могут считаться доказательствами в точном смысле этого слова. Вот почему, например, такая схема рассуждений, где умозаключение делается от истинности следствия к его основанию, не считается правильной. Действительно, если из H следует E, и E-истинно, то H может быть лишь вероятной в определенной степени. Такая схема рассуждения представляет типичный случай изолированного гипотетико-дедуктивного умозаключения, который Рейхенбах называет умозаключением, опирающимся на подтверждающий случай (3, p. 431).

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 378
Бесплатно скачать Курсовая работа: Вероятность и правдоподобные рассуждения