Курсовая работа: Вероятностные процессы и математическая статистика в автоматизированных системах
Задание на расчетно-графическую работу:
1) Найти уравнение регрессии 2-го порядка и выполнить статистический анализ модели.
2) Исследовать модель 2-го порядка на выпуклость и вогнутость методами дифференциального исчисления.
3) Определить тип поверхности отклика.
4) Построить графики зависимости отклика от каждого из факторов Y=f(Xi) при фиксированных значениях остальных факторов (каждый рисунок должен содержать 3-4 кривые).
5) Применяя один из методов оптимизации, найти в исследованной области оптимальные сочетания факторов, обеспечивающие максимальное и минимальное значения отклика.
6) Построить двумерные сечения поверхности отклика, соответствующие пересечению поверхности с плоскостями Xi=Ximax. Для этого в уравнение регрессии необходимо подставить значение этого фактора, и по полученным двухфакторным уравнениям рассчитать, а потом построить изолинии поверхности отклика (кривые равного выхода).
7) Определить типы кривых равного выхода.
8) Используя двумерные сечения поверхности, выполнить анализ влияния факторов в изученных интервалах их изменения на функцию отклика.
2. Этапы планирования и статической обработки результатов эксперимента для построения модели 2-го порядка
2.1 Построение модели плана II порядка
Для построения плана II порядка можно использовать следующую модель:
(2)
Для этого необходимо провести эксперимент так, чтобы каждый фактор варьировался на трех уровнях. Простейшим решением этой задачи является план типа 3k . Реализация этого плана для k>3 требует большого числа опытов.
Для построения модели второго порядка обычно используют ортогональный план первого порядка в качестве ядра, на котором достраивается план второго порядка, поэтому такие планы называются композиционными и соответствуют шаговой идее построения планов.
Для удобства работы с приведенной моделью II порядка, с помощью обозначений (3) преобразуем ее к виду (2’):
(3)
(2’)
Задача заключается в том, чтобы по результатам наблюдений определить значения коэффициентов bi , дисперсии и доверительные границы для них, а также определить их значимость.
Согласно МНК, для нахождения коэффициентов bi , необходимо минимизировать функцию:
(4)
где N – количество опытов;
xui –значение i-й переменной в u-м опыте;
yu – значение экспериментальных y в u-м опыте;
Из условия минимизации функции ss, можно получить систему нормальных уравнений МНК:
(5)
Представив все результаты в матричной форме, получим:
, , , (6)
где X – матрица условий эксперимента; Y – матрица результатов опытов; B – матрица коэффициентов.
Умножив транспонированную матрицу X на матрицу X, получим матрицу системы нормальных уравнений, которая называется информационной матрицей Фишера (матрицей моментов):
(7)