Курсовая работа: Використання елементарних перетворень для знаходження оберненої матриці

For j: =1 to P. CBars do

Begin

A1. Lin: =A1. Lin+ [i] ;

A1. Bar: =A1. Bar+ [j] ;

IF Gauss Then Ver: =A1. DetWithGauss;

IF (A1. Errors<> [0]) or (A. Errors<> [0]) Then Begin ReversError; Exit; End;

P. SetE(j, i,(Ver) *Sign(i+j) /D);

A1. Lin: =A1. Lin- [i] ;

A1. Bar: =A1. Bar- [j] ;

End;

End;

IF Self. Exist Then Self. del;

Self: =P;

Self. SelfClear;

End;

Procedure Matrix. SwapBars(B1,B2: Integer);

Var Prom: TOE;

i: Integer;

Begin

IF Not Exist Then BEgin NotExist; SwapError; Exit; End;

IF (Errors<> [0]) Then Begin SwapError; Exit; End;

For i: =1 to CLines do

Begin

Prom: =GetE(i,B1);

SetE(i,B1,GetE(i,B2));

SetE(i,B2,Prom)

End;

End;

Function Matrix. CuanZeeroInBar(B1: Integer): Integer;

К-во Просмотров: 808
Бесплатно скачать Курсовая работа: Використання елементарних перетворень для знаходження оберненої матриці