Курсовая работа: Використання елементарних перетворень для знаходження оберненої матриці
d=|A|≠0
те з рівностей (3) випливає, що зворотною матрицею для А буде служити матриця, що виходить із присоедененной матриці А* розподілом усіх її елементів на d:
Дійсно, з (3) випливають рівності
(4)
Ще раз підкреслимо, що в і-й рядку матриці А-1 коштують алгебраическиедополнения до елементів і-го стовпця визначника |А|, ділені на d=|A|.
Легко довести що матриця А-1 є єдиною матрицею, що задовольняє умові (4) для даної невырожденной матриці А. Дійсно, якщо матриця З така, що
АС=СА=Е
то
САА-1=С(АА-1) =СЕ=С
САА-1=(СА) А-1=ЕА=А-1
Звідки С=А-1.
З (4) і теореми про множення визначників випливає, що визначник матриці А-1 дорівнює, так що ця матриця так само
буде невиродженою. Зворотної для неї служить матриця А.
Якщо тепер дані квадратні матриці n-го порядку А и В, з яких А-невырожденная, а В - довільна, то ми можемо виконати правий і лівий розподіл У на А, тобто, вирішити матричні рівняння
AX=B, YA=B (5)
Для цього, через асоціативності множення матриць, досить покласти
X=A-1B, Y=BA-1,
причому ці рішення рівнянь (5) буду, через некоммутативности множення матриць, у загальному випадку різними.
2. Опис програми
Програма Matrtest. pas являється демо программою, котра показує роботу процедур з модуля Matr. pas.
Модуль програми Matr. pas – в ній розміщені процедури і функції, котрі роблять перетворення матриць.
У файлі – Time. dat записані коефіціенти матриці, розмірність матриці. Він мусить містити в собі початкову матрицю, і її розмірність, тому, що програма без цих даних працювати не буде.
Нижче приведений “скрин” програми, тобто вигляд програми в роботі.
3. Програма
{============================Matrtest. pas=========================}
Uses matr;
Var A,C: MAtrix;
Begin
A. VMT; C. VMT;
Writeln(' Коэффициеты уравнения ');