Курсовая работа: Вирощування монокристалів кремнію
Нітрид кремнію SiN4 – одне із найстійкіших хімічних зєднань. Його покриття на кремнію захищає його від навколишнього середовища, і від високих температур до 1473 К.
Карбід кремнію SiC –виникає при з’єднанні з карбоном при високій температурі. Це також термостійке з’єднання, яке використовується переважно для покриття графітових деталей, які знаходяться в робочій камері, де обробляється кремній. Завдяки такому покриттю виключається можливість забруднення карбоном, підвищується час роботи графітових деталей при високих температурах.
4. Кремній, маючи оксиген, нерівномірно розповсюджений по об’єму, володіє гетерориючими властивостями по відношені щодо деяких введених домішок. Вони проявляються в тому, що домішки Au, Cu, Ni диффундують в область з підвищеною концентрацією оксигену. В цьому випадку ми бачимо рідкісний випадок дифузії в сторону збільшення концентрації домішки, причому в рухливому шарі йде зниження внутрішньої енергії через зв’язування з домішкою оксигену . Реалізація гетерирування практично не потребує проведення додаткових операцій, бо в результаті термообробок концентрація оксисену в поверхневих шарах зменшується за рахунок його реакції з воднем і видаленням в атмосферу. При спеціальній обробці домішки дифундують у внутрішні області і таким чином виводяться з робочої зони, зайнятої транзисторами І.С.
Епітаксія і гетероепітаксія – явища, які вперше мали широке практичне значення саме в технології кремнію.
ЕПІТАКСІЯ – вирощування монокристалу при температурі меншій за температуру плавлення. Нарощуваний шар переважно дуже тонкий – не більше 5…10 мкм. Але його цілком вистачає для формування саме в цьому об’ємі всієї інтегральної схеми. Епітаксійне нарощування дозволило виготовити структури із захованим шаром і забезпечити ізоляцію елементів за методом “ ізопланар ”, що лягло в основу масового виробництва біполярних І.С.
Кремній - єдиний матеріал, який вдається нарощувати епітаксіально також і на нерідні підкладки ( гетероепитаксія ). Структури кремній на сапфірі мають значні переваги як основа І.С. на комплементарних транзисторах, найменш енергомістких, найшвидкісніших і радіаційно стійких серед І.С.
6. Завдяки відкритій, рихлості структури, і наявності тетраїдних пустот кремній піддається до зміни степеня кристалізації від вищої в монокристалах і мінімальної в аморфному стані. Великий досвід експлуатації і отримання кремнію у вигляді унікальних монокристалів не позбавив інтересу до полікристалів, і аморфних станів, які мають свої специфічні властивості.
Аморфний кремній вдається дістати лише у вигляді тонких плівок при дуже повільному розплаві монокристалу в тліючому високочастотному розряді.
Однак специфічні властивості його: велика ширина заборонених зон – до 2 еВ і високий опір – до 1012 Ом*см – забезпечують кремній хорошими перспективами на майбутнє, особливо для розвитку багаторівневих і об’ємних мікросхем а також сонячних батерей. Маленьке, але дуже важливе застосування при виготовленні елементів І.С. має і полікристалічний кремній, який легко отримати осадженням із газової фази на будь-яку нагріту поверхню ( не монокристалічну ). Будучи сильно легованим, полікристалічний кремній може вдаліше, ніж метали виконувати функції контактів-затворів транзисторів у І.С., і часто внутрішніх комунікацій мікросхеми.
7. Кремній – міцний і жорсткий матеріал, в монокристалічному стані придатний для виготовлення чутливих датчиків у вигляді консолей, мембран дуже малої товщини – 1…3 мкм.
8. Сировина для отримання кремнію є всюди, в земній корі його близько 26%.
Кремній нетоксичний в більшості своїх хімічних з’єднань, його виробництво не зумовлює забруднення навколишнього середовища.
Такі властивості, як висока чистота і досконалість структури, технологічність є перспективні в розвитку і швидкій реалізації наукових досягнень. Вони призвели до детального дослідження цього елемента. Технологія кремнію стала об’єктом промислового застосування багатьох нових методів обробки , яким присвячено більшість публікацій. Цими методами є: епітаксія, йонна імплантація домішок, лазерний відпал, рекристалізація, плазмохімічне травлення, внутрішнє гетерирування домішок, ядерна транс мутація, радіаційна модифікація властивостей, термоміграція, термоз’єднання, амонізація і гідрування.
Комплекс цих високоефективних процесів ліг в основу технологічного гіганта – виробництва мікропроцесорів. Переробка кремнію в мікропроцесор складається неменше ніж з 200 стадій.
Методи вирощування напівпровідникових кристалів
Для вирощування напівпровідникових монокристалів використовують дуже багато методів, що зумовлено з одної сторони різними фізико хімічними властивостями напівпровідникових матеріалів, а з другої - конкретною задачею отримання матеріалу з певними характеристиками.
Технічно добре розвинені методи отримання монокристалів із розчинів, які широко використовуються для кристалізації простих речовин ( германій, кремній ). Для вирощування нестійких хімічних з’єднань ( наприклад, A11 B6, A111 B5 та інші ) з розплаву потрібні додаткові умови, запобігаючи руйнуванню стехіометрії, які можуть суттєво ускладнювати технічне і апаратне виконання кристалізації. До переваг вирощування кристалів із розплаву відносять високу швидкість росту і можливість вирощувати великі монокристали. Недолік цього методу полягає в наступному: необхідні високі температури, які призводять до підвищення концентрації дефектів ( вакансій і дислокацій ) в кристалах.
В технології вирощування напівпровідникових монокристалів найбільше уваги привертається також до методів вирощування монокристалів із розчинів і парової фази. Основні переваги цих методів в тому, що в процесі вирощування кристалів при низькій температурі концентрацію вакансій, а також дислокацій можна звести до мінімуму ( концентрація вакансій залежить від температури експотенціально ). Крім того, метод низькотемпературної кристалізації є єдиним можливим для отримання кристалів речовин, плавлячись інконгруентно або маючи фазовий перехід поблизу температур плавлення. Недоліком методу кристалізації з розчину або з парової пари є повільний ріст кристалу, важкості підбору розчинників, які б не спричиняли забруднень кристалів.
Вирощування з розплавів. Вирощування монокристалів із розплаву виконують в системі кристал – розплав, при чому на границі розділу фаз має місце виділення граничної теплоти кристалізації Ls . Переважно теплоту кристалізації відводять через нарощений кристал.
Кількість тепла Qт , виділяється на фронті кристалізації при скорості росту vр , густини рідини jж і діаметра кристалу 2r, рівно Qт =Ls Jж π r2 vp , а тепловідвід qт через кристал що росте рівний виробленню величини теплопровідності Ктв твердої фази на градієнт температури і поперечного перерізу виробу
Прирівнюючи ці величини, отримаємо
Звідки
В таблиці 1 показано приклад відношення між швидкістю росту і температури градієнтом, який ілюструє відношення (1) для Ge.
Табл. 1
Радіус граничної поверхні між кристалом і рідиною, см 0,1 0,25 0,5 1,0
Максимальна величина dT/dx, град/см 750 475 334 236
Максимальна швидкість dx/dt, см/сек 0,0566 0,0307 0,0217 0,0151
![]() |