Курсовая работа: Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора
Таким чином, , тобто .
Якщо для оператору можна вказати такий лінійний оператор , що , то оператор називають оберненим для оператору . Можна показати, що оператор – єдиний.
Покажемо, що оператор , що має обернений, перетворює ненульовий вектор в ненульовий, тобто якщо , то й . Спочатку доведемо, що . Дійсно, так як – лінійний оператор, то для будь-якого . Доведене твердження справедливе для будь-якого лінійного оператора, в тому числі і для оператора, що має обернений, і для оператора . Нехай і . Так як оператор має обернений, то , тобто . Якщо припустити, що деякому відповідає вектор , тоді на основі установлених рівностей і виходило б, що . А це заперечує початковому фактові, що . З цього випливає, що припущення про те, що для деякого , невірно, тому для будь – якого .
Доведемо ще одну властивість оператора , що має обернений. Такий оператор два різних вектора та перетворює у два різні вектори і . Дійсно, якщо припустити противне, що існують такі нерівні один одному і , для яких , тоді для таких і або, що те саме . За умовою оператор має обернений. За доведеною вище властивістю такого оператора із рівності випливає, що , тобто . Ми прийшли до протиріччя з тим фактом, що за умовою . З цього випливає, що будь – яким двом різним векторам і відповідають різні образи і .
Оператор називають взаємно – однозначним, якщо два будь – які різні вектори і він перетворює у різні вектори і . Із наведеного вище випливає, що оператор , що має обернений, є взаємно – однозначним. Для взаємно – однозначного оператора неважко довести таку властивість: якщо , то і . Покажемо, що взаємно – однозначний оператор лінійно незалежні вектори , , …, перетворює в лінійно незалежні вектори , , …, . Для доведення цього твердження скористаємося методом «від противного». Припустимо противне, що вектори , …, – лінійно незалежні. Тоді можна знайти такі не рівню нулю числа, що . Так як оператор – лінійний, то .
Звідси за властивістю взаємно-однозначного оператора , тобто вектори , , …, виявляються лінійно залежними. Протиріччя з умовою ствердження означає, що вектори , , …, лінійно незалежні.
Із доведеного випливає, що будь-який вектор простору має єдиний прообраз такий, що . Доведемо тільки єдність прообразу вектора . Дійсно, якщо припустити, що вектор має декілька різноманітних прообразів, наприклад, і , то виявиться, що . Звідси , маємо , так як оператор взаємно-однозначний. Отже, якщо оператор – взаємно-однозначний, то кожному вектору простору він ставить у відповідність один і тільки один вектор . Звідси випливає, що взаємно-однозначний оператор має обернений.
Підводячи підсумок сказаному вище про властивості оберненого і взаємно-однозначного операторів, сформулюємо наступне твердження.
Теорема 2.1. Для того, щоб лінійний оператор мав обернений необхідно і достатньо, щоб він був взаємно-однозначним.
Введемо поняття ядра й образу оператора. Ядром лінійного оператора називають таку множину векторів простору , що для любого . Відомо, що будь-який лінійний оператор приводить вектор в , тобто , тому ядро довільного лінійного оператора не є пустою множиною, так як воно завжди містить оператор .
Теорема 2.2. Якщо містить єдиний вектор , то оператор є взаємно-однозначним.
Доведення. Нехай - два довільно взятих вектора лінійного простору. Якщо показати, що , то це буде означати, що оператор є взаємно-однозначним. Припустимо противне, що знайдуться два вектора і , такі, що , а . Тоді для цих векторів . За умовою теореми складається із єдиного вектора , тобто для вектора і тільки для нього . В силу цього чи . Ми прийшли до протиріччя з припущенням про те, що . Тому для будь-яких не рівних один одному векторів і простору . Отже, твердження теореми вірне.
Теорема 2.3. Для того, щоб оператор мав обернений, необхідно і достатньо, щоб .
Доведення цієї теореми основується на теоремах 2.1 і 2.2 про обернений оператор і ядро взаємно-однозначного оператора.
Образом оператора називається множина всіх векторів простору , кожний з яких має прообраз, тобто якщо , то існує такий вектор , що . Легко побачити, що якщо містить тільки нульовий вектор, то є весь лінійний простір : . Дійсно, якщо , то оператор є взаємно-однозначним. За доведеною вище властивістю взаємно-однозначного оператора кожний вектор простору має єдиний прообраз : , так що .
Покажемо тепер, що множина для довільного лінійного простору є підпростором лінійного простору . Нехай і – два довільно взятих вектори множини . Так як , то . Нехай – довільне число. Так як , то . Таким чином, лінійні операції над будь-якими векторами множини дають вектори тієї ж множини, тобто – підпростір простору .
Аналогічним способом доводиться, що множина також є підпростором простору .
Розмірність підпростору називається дефектом оператора. Розмірність підпростору називається рангом оператора . Для рангу оператора використовується одне з позначень або , для позначення дефекту оператора використовується символ .
Теорема 2.4. Для будь-якого лінійного оператора із сума розмінностей його ядра і образу дорівнює розмірності простору , тобто або .
Теорема 2.5. Нехай і - два яких-небудь підпростори - мірного простору , причому . Тоді існує такий лінійний оператор , що , а .
Доведення. Нехай - розмірність підпростору , тобто , а – розмірність підпростору . За умовою теореми . Виберемо базис - мірного простору так, щоб векторів було базисом підпростору . В підпросторі візьмемо який-небудь базис . Розглянемо лінійний оператор , який перетворює вектори простору у вектори , а кожний з векторів у нульовий вектор, тобто .
Оператор довільний вектор простору приводить у вектор , який належить підпростору простора . Звідси випливає, що , тобто підпростір містить образ оператора . Щоб довести, що , треба за означенням множини показати, що будь-який вектор підпростору , має прообраз у просторі . Розглянутий лінійний оператор перетворює вектори простору у вектори , тому довільно взятий вектор підпростору можна представити у вигляді . В силу лінійності оператора и також того, що , вектор можна представити також і в такій формі: , де – довільно вибрані комплексні числа. Останній вираз для довільного вектору означає, що він є образом вектора простору . Таким чином, .
Покажемо тепер, що підпростір є ядром оператора . Нехай який-небудь вектор підпростору . Так як , то це означає, що вектор входить в ядро оператора . Звідси випливає, що підпростір . Для доведення того, що треба показати, що будь-який вектор простору , що не належить підпростору , не може бути елементом ядра оператора . Нехай - вектор простору , який не належить підпростору . Зрозуміло, що хоча б одна із координат цього вектору не рівна нулю, так як в протилежному випадку . Розглянемо . Так як лінійно незалежні вектори, а серед чисел є відмінні від нуля, то . Це означає, що будь-який вектор, що не належить підпростору , не належить і ядру оператора . Отже, .
Теорема 2.6. Нехай і – два яких-небудь лінійних оператора із множини , тоді , .
Доведення. Нехай – довільний вектор простору . Зрозуміло, що . Будь-який вектор множини за означенням добутку операторів це вектор . Останній є вектором множини . З цього слідує, що має місце включення . А це означає, що , тобто . Перше твердження теореми доведено.
Доведемо справедливість другого. Нехай – довільний вектор ядра оператора , тоді , і, тому, . Це означає, що якщо , то , тобто . Звідси випливає нерівність . Позначимо через розмірність простору . Згідно теореми 2.4 , . Так як , то , тобто .
Теорема 2.7. Нехай – розмірність простору , і – лінійні оператори із , тоді .
3. Матриця лінійного оператора
Нехай - деякий базис лінійного простору , а – який-небудь лінійний оператор, діючий із в . Вектор оператор перетворює в вектор . Вектори простору розкладемо по векторах базису цього простору. Побудуємо матрицю порядку , стовпці якої складені із координат векторів ,