Курсовая работа: Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора

Матриця називається матрицею оператора в базисі .

Приклад. Записати матрицю тотожного і нульового операторів у базисі простору .

Розв’язок. Тотожний оператор будь-який вектор простору приводить в той же самий оператор. Тому . А це означає, що матриця тотожного оператора буде одиничною в будь-якому базисі простору . Нульовий оператор будь-який вектор простору перетворює в нульовий вектор, тому матриця цього оператора – нульова в будь-якому базисі.

Із сказаного вище випливає, що в обраному базисі -мірного простору з кожним лінійним оператором можна зв’язати квадратну матрицю порядку . Виникає питання: чи можна кожній квадратній матриці порядку поставити у відповідність такий лінійний оператор , матриця якого в заданому базисі простору співпадає з матрицею ? Стверджувальну відповідь на це питання дає

Теорема 3.1. Нехай – деяка квадратна матриця порядку . Нехай – довільний обраний базис -мірного лінійного простору . Тоді існує єдиний лінійний оператор , який у вказаному базисі має матрицю .

Доведення. Розглянемо лінійний оператор , який вектори базису простору перетворює у вектори , . У базисі оператор , очевидно, має матрицю . Залишається довести, що є єдиним оператором з матрицею. Припустимо протилежне, що, крім оператора , існує ще лінійний оператор , маючий матрицю в базисі . Це означає, що , . Виберемо який-небудь вектор простору і розглянемо вектори і . Маємо .

Як наслідок, що для будь-якого . Звідси витікає, що . Теорему доведено.

Теорема 3.2. Нехай – матриця лінійного оператора в базисі простору . Ранг оператора дорівнює рангу його матриці: .

Доведення. В основі доведення лежать означення рангу оператора і рангу матриці: , ранг матриці дорівнює рангу системи його стовпців.

Нехай – який-небудь вектор - мірного простору . Образом вектора є вектор . Як бачимо, довільний вектор образу оператора , тобто множини , представляє собою лінійну комбінацію векторів . Отже, є лінійною оболонкою множини векторів . Відомо, що розмірність лінійної оболонки дорівнює рангові системи векторів, які вони утворюють, тому . За означенням у стовпцях матриці оператора розміщені координати векторів у базисі . Отже, на основі означення рангу матриці . Таким чином, .

Нехай і матриці операторів і в якому-небудь базисі простору , тоді із способу побудови цих матриць витікає, що матриці операторів і , де і – довільно взяті числа, рівні відповідно і

К-во Просмотров: 177
Бесплатно скачать Курсовая работа: Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора