Курсовая работа: Влияние биологически активных факторов окружающей среды на наследственные системы организма человека
Анализ аберраций хромосом в лимфоцитах периферической крови людей, пострадавших от воздействия ионизирующего излучения, дало возможность выяснения в несколько раз числа нестабильных и стабильных аберраций хромосом по сравнению с контролем. Стало известно, что число нестабильных аберраций хромосом снижается во времени. Принято считать, что в лимфоцитах периферической крови уменьшается в двое в течении 3-4 лет. Однако наблюдаемый через 8 лет после аварии на ЧАЭС повышенный уровень аберраций может быть связан с постоянным поступлением в кровь клеток с аберрациями хромосом вследствие деления несущих аберрации хромосом стволовых клеток кроветворной ткани, тоже пораженной радиацией [3].
Генетическое облучение человека – ожидаемые генетический эффект у потомков облученных людей, внуков, правнуков и т.д., чтобы оценить эти эффекты у первых поколений после облучения используют подходы, которые основаны на двух методах: метода удваивания дозы и прямого метода.
Метод удваивающей дозы основывается на такой же дозе, при которой наблюдается естественный мутационный процесс. Но при использовании данного метода надо учитывать, что естественный уровень мутационного процесса в популяции человека – это равновесный уровень, который исторически сложился и зависит от интенсивности мутационного процесса и интенсивности отбора против возникших мутаций. Интенсивность отбора снижена, так как достаточно высокий уровень естественной изменчивости человека.
При длительном хроническом облучении популяций человека равновесный уровень мутагенеза устанавливается только через семь-десять поколений с начала облучения. При этом индуцированные ионизирующим излучением мутационные изменения зависят от мощности дозы.
При удвоенной дозе равновесный уровень мутагенеза от ионизирующих излучений сравнятся с равновесным уровнем естественной изменчивости человека и общий уровень мутагенеза удвоится [3].
Следует помнить, что все расчеты по оценке динамики мутационного процесса в облучаемых популяциях человека получены на основе экспериментов, проводимых с хронически облучаемыми популяциями модельных объектов исследований – дрозофилы и лабораторных мышей. В настоящее время в мировой научной литературе нет данных, которые позволили бы корректно оценить динамику мутационного процесса непосредственно в облучаемых популяциях человека, несмотря на популяции, которые подвергались облучению в местах с радиоактивным загрязнением.
В зависимости от той степени, в которой генетические изменения приводят к мультифакториальным болезням и врожденным аномалиям, могут индуцироваться ионизирующими излучениями, будет изменяться и ожидаемый генетический риск в следующих поколениях. Можно предположить, что болезни составляющую основную часть естественной наследственной отягощенности популяций человека, не будут индуцироваться радиацией (что весьма маловероятно), то генетический риск в первом поколении составит 17 случаев наследственных болезней на 1млн новорожденных при дозе 0,01Зв. Если же эти болезни сложной этиологии будут действительно индуцироваться радиацией, то генетический риск облучения популяции человека составит значительно большую величину – 50-350 случаев на 1млн новорожденных при дозе облучения 0,01Зв.
Прямой метод – путь анализа частоты индуцированных мутаций отдельных генов, анализа частоты аберраций хромосом и изменения числа хромосом у человека и экспериментальных объектов. Например, зная частоту мутаций отдельных генов в расчете на 0,01Зв и зная частоту структурных генов в геноме человека (около 100 тысяч) можно оценить суммарную ожидаемую частоту появления генных мутаций при той или иной дозе [3]. Данный метод позволяет дать оценку частоте индуцированных мутаций и реципрокных транслокаций.
Необходимо отметить, что при использовании прямых методов основные результаты по частотам индуцированных мутаций у человека рассчитаны путем экстраполяции с данных, полученных на экспериментальных животных.
Приведенные количественные показатели риска относятся к числу ожидаемых случаев серьезных генетических болезней. Термин "серьезные генетические болезни " означает плохое состояние здоровья, мешающее трудоспособности, физические и умственные недостатки или нетрудоспособность генетического происхождения [3], которые могут появиться в любой момент от рождения до старости. Можно оценить генетический ущерб от ионизирующих излучений. Для оценки могут быть использованы показатели неполноценной жизни (домашняя изоляция, пребывание в больницах и т.д.), а так же сокращение продолжительности жизни.
Важно отметить, что под действием ионизирующих излучений популяции могут претерпевать серьезные изменения генетической структуры, влияющие на формирование последующих поколений [3]. По результатам исследования, итогом сильных облучений наблюдается обеднение генофонда по сравнению с контролем вследствие снижения генетического разнообразия аллелей, выявляемых путем электрофореза белков.
Недостаточно изучена генетическая чувствительность половых клеток человека и ранних эмбриональных этапов. В данном направлении были получены важные данные белорусских генетиков при изучении последствий Чернобыльской катастрофы. В загрязненных радионуклидами районах Беларуси увеличилась частота всех пороков, особенно частота расщелин губы и неба, удвоение почек и мочеточников, полидактелии и дефектов нервной трубки. Так же были выявлены такие заболевания как анэнцефалия, спинномозговые грыжи, расщелины губы и/или неба, полидактилия, редукционные пороки конечностей, атрофия конечностей и ануса, синдром Дауна и отдельные группы множественных врожденных пороков развития.
3. ВЛИЯНИЕ МУТАГЕННЫХ ФАКТОРОВ НА МИТОХОНДРИАЛЬНУЮ ДНК. МИТОХОНДРИАЛЬНЫЕ ПАТОЛОГИИ
Митохондрию можно рассматривать как генетическую химеру: ее 13 важнейших полипептидов кодируется митохондриальным геномом, но сотни других полипептидов, из которых собрана митохондрия, кодируются ядерными генами. Мутации в ядерных генах ведут себя как классические менделевские факторы, то есть вызванные ими болезни наследуются как аутосомно-рецессивные или как аутосомно-доминантные. Мутации в митохондриальном геноме отличаются от ядерных мутаций. Митохондрии не подвергаются митозу, поэтому в процессе клеточного деления митохондрии распределяются между дочерними клетками случайным образом. Этим объясняется то, что митохонриальная наследственность является более сложной, чем ядерно-хромосомная.
Особенной отличительной чертой генетических болезней, вызываемых мутациями в мтДНК, является материнское наследование . Не смотря на то, что сперматозоид содержит митохондрии, при оплодотворении они не проникают в яйцеклетку. Поэтому эмбрион получает все митохондрии от яйцеклетки. Следовательно, если мужской арготизм является носителем митохондриальной болезни, то он не может ее передать своим потомкам, в то время как потомки женщины могут быть поражены этой болезнью.
Фактором, который усложняет картину наследования митохондриальных болезней, является существование такого явления, как гетероплазмия. Гетероплазмия – генетическая гетерогенность популяции митохондрий у некоторых индивидуумов. Когда мутация возникает в мтДНК, она воспроизводится во всех ее копиях, но при этом нет механизма, по средствам которого данная мутация распространялась бы на все другие молекулы мтДНК в той же клетке. Когда начинает делится клетка, содержащая смесь нормальных и мутагенных молекул мтДНК, то дочерняя клетка получает случайную смесь таких митохондрий [2]. Таким образом, гетероплазмия в каждой новой клетке может быть большей или меньшей, чем в родительской клетке. Так как большинство мутаций в мтДНК отрицательно влияют на энергетический обмен, то можно понять, что если вся мтДНК в данной клетке будет мутагенной, то есть возможность, что клетка будет не жизнеспособна. На данный момент не известно, гетероплазмия какой степени является совместимой с нормальной жизнью, а при какой индивидуум становится клинически пораженным. Это сильно зависит от природы мутации, а также от остального генетического фонда у каждого индивидуума.
Важным является вопрос: будет ли ребенок поражен генетической болезнью в большей или меньшей степени, чем его пораженная болезнью мать? Яйцеклетка человека содержит примерно 100000 молекул мтДНК. Некоторые исследователи предполагают существование некоего генетического "горлышка бутылки" (узкого моста) в процессе оогенеза – времени, когда число митохондрий в клетке мало. Если это возможно, то тогда случайное распределение митохондрий может приводить к большим различиям в уровне гетероплазмии в каждой яйцеклетке [2]. Однако эта гипотеза не подтверждена. Другим фактором, который может влиять на уровень гетероплазмии у детей пораженных болезнью матери, является то, что мтДНК не реплицируется пока эмбрион не закрепится в матке. Молекулы мтДНК, которые присутствуют в яйцеклетке, распределяются между клетками зародышевого пузыря (бластоцистами) случным образом. Потому есть вероятность, что в этих клетках уровень гетероплазмии будет различным. Существует доля какой-либо ткани или органа взрослого организма может быть потомком всего лишь одной клетки-бластоцисты. Кроме того, доля мутагенных молекул мтДНК может изменятся в тканях организма по мере его развития и с возрастом. В результате симптомы некоторых митохондриальных болезней развиваются не только между разными семьями, но и внутри одной.
Другой способ классифицировать генетические болезни, вызванные мутациями в мтДНК, – разделить их на болезни вызванные мутациями в 13 генах, кодирующих белки, и вызванные мутациями в генах для тРНК или рРНК. Мутации в мтДНК в любом из генов для митохондриевых рРНК или тРНК затронут синтез белка целиком, тем самым снизит общее количество функциональных копий белков, кодируемых мтДНК. Таким образом, маловероятно то, что мутации в генах для мтДНК достигают гомоплазмии, так как общее снижение энергетического обмена сделает клетки не жизнеспособными, даже если дефект умеренный.
Рассмотрев факторы мутагенов мтДНК, можно рассмотреть болезни, которые возникают в результате мутаций, затрагивающих функцию митохондрий.
Миоклоническая (миоклонус-) эпилепсия с разорванными красными мышечными волокнами (синдром MERRF) вызывается заменой оснований А на , G в положении 8344 гена митохондриевой лизиновой тРНК [2]. MERRF характеризуется патологией центральной нервной системы (эпилепсия, глухота, слабоумие) и дифектом скелетных и сердечных мышц. Это обнаруживается в виде "изорванных" мышечных волокон после окраски трехкомпонентным красителем Гомори и аномальных митохондрий, которые можно наблюдать под электронным микроскопом [2]. Внутри родословных тяжесть и тип симптомов варьируются существенно, это свидетельствует о гетероплазмии мутагенных мтДНК
Биохимический анализ мышечной биопсии у некоторых больных указывает на нарушение функций митохондриевых комплексов I и IV. Анализ родословных показывает, что никакие другие мутации, кроме замены А и G, не связаны симптомами MERRF. Эту мутацию легко диагностировать, поскольку она создает сайт, расщепляемый определенной рестиктазой (эндонуклеазой рестрикции). Используя этот метод, исследователи выявили хорошую коррекцию между тяжестью симптомов и долей мутантной ДНК в митохондриях индивидуальных больных.
Почему эта мутация затрагивает преимущественно комплексы I и IV, а не все компоненты дыхательной цепи? Это не известно наверняка. Однако молекулярная биология позволяет предположить этому несколько объяснений:
1. Мутагенная тРНК может быть инактивирована не полностью, и так как содержание лизина варьируется от белка к белку, то может варьироваться и количество полноценных синтезированных белков.
2. Влияние пониженного количества одной полипептидной цепи может иметь различное влияние на стабильность ферментативного комплекса [2].
Глухота также может являться генетической митохондриевой болезнью. Известно, что у пациентов, для лечения бактериальной инфекции которых использовали аминогликозидные антибиотики (стрептомицин или гентомицин), иногда наблюдалась потеря слуха. Объясняется это эволюционным развитием митохондрии, которая является потомком бактерии. Аминогликозиды убивают бактерий, так как взаимодействуют с их рибосомами, стабилизируя неправильное связывание тРНК с антикодонами. Это приводит к накоплению ошибок в белках. У большинства людей митохондриальные рибосомы сильно отличаются от бактериальной, и поэтому аминогликозидs практически не нарушают синтез митохондриевых белков. Однако было обнаружено несколько смесей с одиночной заменой А на G в положениии 1553гена для малой митохондриевой рРНК, и эта мутация делала их рибосомы чувствительными к аминогликозидам. В одной семье эта мутация была гомоплазматической [2].
Примером генетической болезни, вызываемой миссенс-мутацией в белке, кодируемом мтДНК, является наследственная зрительная нейропия Лебера . Болезнь характеризуется потерей зрения, начиная с центра сетчатки глаза и распространяется к периферии. Болезнь является результатом снижения функции зрительного нерва и начинает развиваться в возрасте 20 – 24 года. Также могут наблюдаться нарушения сердечной деятельности. Практически во всех миссенс-мутация затрагивает одну из субъединиц комплекса I. Неизвестным является то, почему глазной нерв является первичным местом приложения этой мутации, и почему действие проявляется только с 20-летнегго возраста [2].
Некоторые митохондриальные генетические болезни являются следствием крупных делеций в мтДНК. При этом время начала болезней варьируется, а общим является то, что с возрастом симптомы усиливаются и часто приводят к смерти от дыхательной недостаточности или общей системой дисфункции. Примером может служить синдром Кирнса-Сейра (СКС). Данный синдром характеризуется разнообразными нейромышечными симптомами, включая пигментную дегенерацию сетчатки, поражения сердца, слабоумие, припадки и пр. у многих больных СКС были обнаружены большие делеции значительной части мтДНК. Они затрагивают по несколько митохондриевых генов, но общей их чертой является то, что сайты инициации репликации ДНК не делетируются. Гетероплазмия является непреложной особенностью этих делеций; в противном случае произойдет гибель клетки из-за тотального отказа важнейших функций митохондрий [2].
Некоторые мутации в мтДНК связаны с сахарным диобетом, наступающим в позднем возрасте. Одной из причин является замена оснований А на G в гене для лейциновой тРНК, в результате чего в митохондриях нарушается терминация транскрипции. В результате происходит генерализованный дефект в синтезе митохондриальных белков.
В настоящее время людям, которые страдают от болезней, вызванных мутациями в мтДНК, помочь практически ничем нельзя. Наилучшими средствами, которые временно облегчают проявление болезни, являются такие фармакологические средства, как аскорбиновая кислота. Возможна ли генная терапия? На этом пути возникает огромное количество трудностей. Прежде всего доступ к наиболее пораженным тканям invivo будет столь же трудным, как и в случае генной терапии болезней, вызванных мутациями в ядерных генах [2]. Также доставка любой терапевтической макромолекулы в митохондрии представляет проблему, из-за специфичности транспорта молекул через митохондриевые мембраны. Одно из предположений было таким: вводить ген для белка, кодируемого мтДНК не в митохондрию, а в ядро. Такой ген можно предварительно модифицировать таким образом, чтобы он кодировал сигнальную аминокислотную последовательность на N-конце белка, необходимую для связывания с митохондриями и проникновения в них [2]. Но мы не знаем, как будут вести себя гидрофобные белки в соответствии с нашими ожиданиями. Не следует забывать, что многие мутации в мтДНК изменяют молекулы тРНК, которые влияют на синтез более чем одного митохондриевого белка, каждый из которых должен бы быть замещен цитозольным синтезом. Есть и другая схема, которая также интенсивно обсуждается. В ней предлагается использовать молекулы ДНК, присоединенные к сигнальным аминокислотным последовательностям. Это могло бы обеспечить их транспорт в митохондриевый матрикс, где они могли бы транскрибироваться. Также предлагается конструировать олигонуклеотиды, способные проникать в митохондрии и подавлять репликацию мутантных мтДНК, тем самым позволяя немутантной мтДНК реплицироваться нормально [2]. Но ни одна из данных схем не обещает быть.