Курсовая работа: Влияние космической радиации на солнечные батареи искусственных спутников Земли и способы защиты
Содержание
Введение
Космическая радиация
Радиационная деградация ФП и СБ
Деградация оптических параметров ФП
Заключение
Таблицы
Список литературы
Введение
Опыт эксплуатации солнечных батарей на спутниках показал, что существующие в околоземном космическом пространстве потоки корпускулярной радиации оказывают сильное разрушающее влияние на фотоэлементы.[1] Корпускулярная радиация состоит из:
-Космических лучей, имеющие галактическое происхождение, состоящие в основном из протонов, а также легких ядер(имеют низкую интенсивность и поэтому не опасны для солнечных батарей).
-Космических лучей, появляющихся в результате вспышек на Солнце. Длится такое излучение от нескольких часов до суток и состоит, в основном, из протонов. Наблюдается через 2-3 года после максимума 11-летнего цикла солнечной активности.
-Частицы, захваченные магнитным полем земли. Они представляют наибольшую опасность для солнечных батарей, так как они действуют непрерывно.
В зависимости от высоты орбиты спутника, перечисленные факторы влияют по-разному. Соответственно, и методы защиты будут различными.
Космическая радиация
В 50-е годы в космическом пространстве установлено наличие потоков заряженных частиц (электронов, протонов, α-частиц), захваченных магнитным полем Земли. В таблице 1 указан состав космического корпускулярного излучения в зависимости от высоты полёта КА.
Плотность радиационных потоков и энергия содержащихся в них частиц распределена в космическом пространстве неравномерно. Наибольшая плотность частиц отмечена в двух участках пространства, называемых радиационными поясами Земли. Возникновение их обусловлено магнитными полюсами нашей планеты. Оно захватывает попадающие в него заряженные частицы, в результате чего магнитосфера земли заполняется электронами, протонами, а также ионами различных энергий. Их совокупность образует радиационные пояса, условно разделяемые на внешний и внутренний. Положение их в пространстве можно выразить величиной L , соответствующее расстоянию до оси формирующего магнитное поле Земли диполя. Эта величина выражена в единицах радиуса Земли – 6370 км. Указанные пояса расположены симметрично относительно земной поверхности вследствие как смещения диполя относительно оси Земли, так и наличия Южно-Антарктической магнитной аномалии. Внутренний пояс расположен в интервале I, 2 < L <2,5, причём максимальная интенсивность потока электронов с ростом их энергии смещается в область меньших высот. Внешний радиационный пояс простирается до L = 8, причём между ним и внутренним поясом имеется промежуток L = 2,5 … 3, в котором потоки электронов становятся относительно малыми. Исследования показали, что внутренний радиационный пояс остаётся достаточно стабильным во времени, тогда как для внешнего пояса характерны изменения как по интенсивности, так и по распределению частиц в пространстве. Внутренний пояс состоит из электронов с энергией более 100 кэВ и протонов с энергией более 30 МэВ, а внешний внешний пояс содержит электроны со сплошным спектром энергий от нескольких кэВ до МэВ и протоны с энергией до нескольких МэВ.[2]
Основным негативным воздействием космической радиации является создание дополнительных центров рекомбинации путём смещения атомов полупроводникового материала ФП в междоузлии. Наибольший эффект вызывают электроны с энергией 0,2…1,0 МэВ и протоны с энергией 4…40 МэВ.
Протонная составляющая радиации поясов стабильна во времени. При этом пространственное распределение потоков протонов не совпадает с электронным. В итоге максимальная интенсивность протонов с энергиями 1…2 МэВ отмечена в зазоре между поясами, причём с ростом энергии этих частиц она смещается ближе к Земле.
Радиационные пояса имеются и у других планет Солнечной системы. Сильное магнитное поле Юпитера, магнитосфера которого распространяется на расстояние примерно 100 его радиусов, создаёт интенсивные потоки заряженных частиц. Очень большие потоки электронов высоких энергий во внутреннем поясе этой планеты (L < 10Rюп ) почти отсутствуют в радиационных поясах Земли. Во внешнем радиационном поясе ( 20Rюп > L > 100Rюп ) интенсивность потоков снижается на 3 – 4 порядка, но всё же они могут представлять опасность для солнечных батарей КА, направляемых к этой планете. Магнитным полем обладает и Меркурий, но оно значительно слабее земного и не создаёт зон стабильного захвата заряженных частиц. Тем не менее в магнитосфере этой планеты зарегистрированы потоки электронов с энергиями более 0,3 МэВ, что значительно превышает фоновый уровень межпланетного пространства.
Источником радиационного воздействия на СБ КА может быть так же и солнечное космическое излучение, возникающее в результате вспышек на солнце. Это явление сопровождается выбросом большого количества протонов. Частота этих вспышек определяется фазой 11-летнего цикла солнечной активности и носит сезонный характер, причём максимумы приходятся на весну и осень.
Солнечные космические лучи представляют особую опасность в межпланетном пространстве, так как в близи Земли их экранирует магнитосфера нашей планеты.
Воздействие космического ультрафиолетового излучения. УФ-составляющая солнечного излучения ухудшает как характеристики входящих в СБ фотопреобразователей, так и параметры пассивных элементов схемы.
Радиационная деградация ФП и СБ.
Совокупное действие космической радиации на ФП приводит, главным образом, к снижению тока короткого замыкания, связанному с уменьшением времени жизни и диффузной длины носителей заряда. Это обусловлено возникновением под действием радиации дефектов кристаллической решётки базы ФП, являющихся центрами рекомбинации. Предполагают, что их концентрация линейно зависит от дозы излучения:
Nрад=К0Ф0
где К0 -число центров, создаваемых каждой частицей на одном сантиметре пробега, Ф0-сумарный по времени поток. Время жизни или скорость рекомбинации в объёме для этого случая можно записать в следующем виде:
1/τ = 1/τ0 +Кτ Ф
где τ0 –исходное время жизни носителей заряда, Ф –доза облучения, Кτ –постоянный коэффициент. Величина Кτ Ф определяет увеличение скорости рекомбинации, вызванное радиацией. Аналогичное выражение можно записать и для диффузной длины:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--