Курсовая работа: Волоконные световоды для связи

K = (NA)2

Значит, чем больше апертура, тем большая доля излучения источника попадает в световод и тем мощнее сигнал. На практике апертуру можно увеличить за счёт параметра Δn , используя, например, стеклянную сердцевину без оболочки. Но при этом возникают две проблемы. Во-первых, при полном внутреннем отражении часть световой волны проникает сквозь отражающую поверхность. Вторая проблема связана с возникновением мод.

Кроме перечисленных, есть ещё несколько параметров, которые определяют качество волоконно-оптических линий связи, а значит, и области их применения.

Затухание. Этот параметр определяет потери интенсивности светового сигнала в волоконном световоде и измеряется в обычных для линий связи единицах - дБ/км (децибел на километр). Затухание происходит, в основном, по двум причинам: из-за поглощения и рассеивания.

Поглощение связано с возбуждением в материале световода электронных переходов и резонансов. В результате этого увеличивается тепловая энергия, накапливаемая в оптическом волокне. Поглощение зависит как от свойств материала, из которого изготавливается оптоволокно, так и от длины волны источника света.

Рассеивание меньше зависит от свойств материала и, в основном, определяется нарушением геометрической формы оптического волокна. Следствием этих нарушений является то, что часть лучей покидает оптоволокно. Интенсивность рассеивания зависит не только от качества материала, из которого изготавливается сердцевина оптоволокна, но и от качества оболочки, так как часть сигнала, вопреки теории, распространяется в ней. Бороться с этим можно за счёт нанесения на оболочку поглощающего покрытия.

Подчеркнем, что затухание (поглощение) во многом зависит от длины волны светового сигнала. Причем экспериментально установлено три "окна", в которых поглощение заметно уменьшается - это 0,85 мкм, 1,3 мкм и 1,55 мкм (чем больше длина волны, тем меньше потери от затухания). Данные длины волн, относящиеся к инфракрасному диапазону, рекомендованы МКТТТ для использования (и используются) в волоконно-оптических линиях связи. Если в первых волоконно-оптических линиях связи использовались источники с длиной волны 0,85 мкм, то сейчас на этой длине работают только небольшие волоконно-оптические сети. В магистральных ВОЛС сейчас используются лазеры с длиной волны излучения 1,55 мкм.

5.2 Основные виды волоконных световодов

Рассмотрим, как световой сигнал распространяется в световоде. Из-за многократного отражения луча от стенок световода, световой импульс, пройдя по оптоволокну, трансформируется в серию мод. При этом в конечную точку могут прийти лучи, которые вошли в световод в один и тот же момент времени, но под разным углом. Как следствие, эти лучи (моды) проходят разные расстояния и "появляются на приемном конце" не одновременно. Это явление получило название межмодовой дисперсии. Чем больше длина оптоволокна, тем больше будет разброс по времени прибытия, тем меньше будет полоса пропускания.

В приближении геометрической оптики точечный излучатель у одного из торцов оптоволокна может быть трансформирован в решетку синфазных излучателей, находящихся друг от друга на расстоянии, равном диаметру оптоволокна. Диаграмма направленности каждого из излучателей ограничена углами полного внутреннего отражения, и, в зависимости от расстояния между ними (или диаметра оптоволокна), набег разности фаз между излучателями может быть достигнут только в одном направлении (случай одномодового волокна) или сразу в нескольких (многомодовое волокно). В указанных направлениях излучения от излучателей будут складываться синфазно, образуя распространяющиеся волны или, иначе говоря, моды. Ясно, что для того, чтобы достичь другого торца волновода, разным модам придется пройти разное расстояние. В зависимости от способа борьбы с межмодовой дисперсией все оптические волокна можно разделить на несколько подвидов:

- многомодовые ступенчатые

- многомодовые градиентные

- одномодовые.

5.2.1 Многомодовые волоконные световоды

В случае многомодового волокна диаметр сердечника (50…1000 мкм) по сравнению с длиной световой волны (1300 нм) относительно большой. Свет может распространяться в волокне в различных направлениях или модах, что и определяет название многомодовых световодов.

Многомодовые ступенчатые волоконные световоды

В волокне с шаговым индексом коэффициент преломления (возможность материала отражать свет) постоянен по всему сечению сердечника. Это приводит к тому, что лучи света, распространяются в нем, так как показано на рис. 5.


Рис. 5. Распространение излучения в ступенчатом многомодовом волоконном световоде(1 – входной импульс; 2 – дисперсия; 3 – выходной области; 4 – коэффициент преломления; 5 – мода высокого порядка; 6 – мода низкого порядка).

В многомодовом волокне лучи света, соответствующие различным модам, проходят различные дистанции. Если в такое волокно ввести короткий импульс света, то его лучи прибудут на противоположный конец через различные промежутки времени, и выходной импульс будет шире, чем входной. Это явление называют модовой дисперсией. Она ограничивает число импульсов в секунду, которые могут быть переданы через волокно и все ещё распознающихся на противоположном торце, как отдельные импульсы. По этой причине пропускная способность волокна с шаговым индексом невелика и составляет 20…30 МГц для кабеля длиной 1 км. Ступенчатые волокна вследствие их дешевизны наиболее привлекательны для использования в локальных сетях и даже в домашнем быту.

Многомодовые градиентные волоконные световоды

За счёт сложного легирования оптоволокна можно добиться плавного уменьшения показателя преломления от центра к оболочке волокна. Тогда моды, хотя и будут по-прежнему проходить разные пути, но делать это за одинаковое время. Погонная полоса пропускания по сравнению со ступенчатым волокном заметно увеличивается, до 100…1000 МГц/км.

Показатель преломления градиентных волокон обычно имеет параболический профиль, который получают, вводя в однородную стеклянную нить специальные добавки. В результате, при прочих равных условиях, число распространяющихся мод уменьшается примерно в два раза в сравнении со ступенчатым волноводом.

Волоконно-оптические линии связи на многомодовом волокне обладают интересным свойством: полоса пропускания линейно зависит от длины кабеля, поэтому её измеряют не в абсолютных, а в удельных показателях, обычно в МГц·км. Так, волоконно-оптический кабель с характеристикой 100 МГц·км при длине 100 м будет иметь полосу пропускания 1 ГГц. Понять причину этого свойства нетрудно, рассмотрев, какое расстояние пройдет луч (мода) в зависимости от угла входа в световод (рис.6).

Рис.6.Распространение излучения в градиентном многомодовом волоконном световоде (1 – входной импульс; 2 – дисперсия; 3 – выходной области; 4 – коэффициент преломления)

Пусть в момент t = 0 на входе оптического волокна подается световой импульс. Его лучи будут распространяться в разных направлениях. Заданное расстояние L быстрее всех пройдет луч, идущий вдоль оси (φ=0 ). Последним придет луч, вошедший под критическим углом (φ = φкр ). Величина запаздывания между ними определяется как

К-во Просмотров: 256
Бесплатно скачать Курсовая работа: Волоконные световоды для связи