Курсовая работа: Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид
Стремление повысить активность при низких температурах привело к разработке катализатора СВС и катализатора Института катализа (ныне Институт катализа им. Г. К. Борескова СО РАН). Они производятся с использованием в качестве носителя охлажденного силикагеля при применении гидратированного пятиоксида ванадия по несколько отличающимся между собой технологическим схемам. Применение этих катализаторов при концентрации газа 8 – 9% SO2 позволяет снизить температуру на входе в I катализатора до 405 – 410 0 С. Там же были разработаны катализаторы ИК-1-6, МСВ – с малым содержанием ванадия. Сейчас для окисления сернистого ангидрида в серный в производстве серной кислоты применяются катализаторы ИК-1-6М, также разработанные Институтом катализа. (ИК-1-6М - семейство новых катализаторов, являющихся модернизированными аналогами катализатора ИК-1-6; работают в широком диапазоне температур - от 380 до 640 °С в системах одинарного и двойного контактирования, а также в аппаратах нестационарного окисления SO2 )[4] . Для переработки газов повышенной концентрации (10 – 11% SO2 ) был разработан катализатор ТС (термостабильный), более устойчивый к термической инактивации, чем СВД. В качестве носителя используется модифицированный диатомит. Также применяют шариковый износоустойчивый катализатор для работы во взвешенном слое, разработанный в ЛТИ (СПбГТИ (ТУ)). Его получают пропиткой растворами ванадата и сульфата калия шарикового алюмосиликагеля с определенным содержанием Al2 O3 и последующей термообработкой, при которой, в зависимости от температуры и содержании вводимого KNO3 , создается определенная пористая структура. Для переработки газов с повышенной концентрацией SO2 и под давлением были созданы ванадиевые катализаторы, обладающие повышенной термостабильностью или повышенной температурой зажигания. Существует трубчатый катализатор СВД с пониженным гидравлическим сопротивлением. Иностранные фирмы – поставщики катализаторов для серной кислоты: BASF (ФРГ), MonsantoEnvironmentalChemicalSystems (США), AmericanCyanamidCo (США), CatalystandChemicalsInc (США), HaldorTopsoe (Дания), SaintGobeinandKrebs (Франция), Kemira (Финляндия) и др.
Механизм и кинетика окисления серы[5] .
Катализаторы окисления диоксида серы в триоксид имеют различный состав. Так, в СВД установлено присутствие трех соединений: 3K2 S2 O7 *V2 O5 , 2K2 S2 O7 *V2 O5 и K2 S2 O7 *V2 O5 , разлагающихся при температурах соответственно 315 – 330, 365 – 380 и 405 – 400 0 С. Активный компонент ванадиевых катализаторов в температурной области их применения находится в расплавленном состоянии, возникает специфическая особенность в механизме их действия. Катализаторы работают как абсорбционные и процесс окисления протекает внутри слоя активного компонента. В области высоких значений поверхности реакция протекает во всем объеме расплава вследствие его малой величины, со снижением поверхности катализатора толщина пленки расплава увеличивается и скорость реакции лимитируется диффузией газообразных компонентов в объеме расплава.
Схема процесса может быть сформулирована следующим образом:
1) 2V5+ + O2- + SO2 2V4+ + SO3
2) 2V4+ + 1/2O2 2V5+ + O2- А
В первой стадии достигается равновесие, вторая стадия является медленной и определяет скорость процесса.
В области температур выше 4200 С скорость каталитической реакции много больше скорости восстановления катализатора. В связи с этим вероятен механизм, в котором процесс протекает по пути, не связанному с изменением валентного состояния ванадия. Схематакогопроцесса:
1) V2 O5 *nSO3 + SO2 V2 O5 *(n - 1)SO3 *SO2 + SO3
2) V2 O5 *(n - 1)SO3 *O2 V2 O4 *nSO3 Б
3) V2 O5 *(n - 1)SO3 *SO2 + O2 + SO2 V2 O5 *nSO3 + SO3
В случае Б скорость каталитической реакции пропорциональна доле активного компонента в окисленной форме. По этому механизму реакция протекает в присутствии триоксида серы в газовой фазе.
Скорости окисления ванадия (IV) кислородом и каталитической реакции в присутствии SO3 близки и при малых степенях превращения процесс протекает по окислительно-восстановительному механизму, который может быть представлен схемой:
1) V2 O4 *nSO3 V2 O4 *(n - 2)SO3 + 2SO2
2) V2 O4 *(n - 2)O3 + 1/2O2 V2 O5 *(n - 2)SO3 В
3) V2 O5 *(n - 2)SO3 + SO2 + SO3 V2 O4 *nSO3
Скорость реакции определяет стадия (2).
Таким образом, кинетические закономерности достаточно сложны.
На скорость реакции влияет также внутренняя диффузия. В реальных условиях контактного процесса влияние внешнедиффузионных факторов составляет менее 3%. Диффузионное сопротивление уменьшается с ростом массовой скорости газового потока при высоких парциальных давлениях реагентов, при малых значениях скоростей реакции и размера зерна катализатора.
Влияние давления на процесс окисления диоксида серы.
Повышение давления влияет как на скорость процесса, так и на состояние равновесия. Скорость реакции и выход продукта с повышением давления увеличиваются за счет повышения действующих концентраций SO2 и O2 и увеличения движущей силы процесса. Начальная температура (температура газа на входе в I слой катализатора) понижается с увеличением давления.
Температура газа на входе в I слой:
Давление, МПа | Концентрация SO2 , % | |||
8 | 9 | 10 | 11 | |
0,5 | 440 | 383 | 364 | 348 |
0,7 | 400 | 378 | 359 | 342 |
1,0 | 398 | 375 | 353 | 336 |
Значения температур, соответствующих равновесной степени превращения 0,998 при давлении в системе 1,0 МПа:
Сso2 ,% | 8 | 9 | 10 | 11 | 12 |
t,0 C | 400 | 393 | 386 | 379 | 372 |
Технологическое оформление процесса окисления диоксида серы .
Технологическая схема и аппаратура контактного узла зависит от вида применяемого сырья, способов отвода тепла реакции, производительности установки и других факторов.
На рис. представлена схема контактного узла с одинарным контактированием, включая 4-слойный аппарат с промежуточными теплообменниками. Очищенный и осушенный сернистый газ подается газодувкой, нагревается во внешнем и промежуточных теплообменниках и поступает на I слой контактного аппарата. Пройдя все слои катализатора с промежуточным охлаждением в теплообменниках, прореагировавший газ покидает контактный аппарат, охлаждается во внешних теплообменниках и поступает на абсорбцию образовавшегося SO3 . оптимальный температурный режим поддерживается с помощью байпасных газоходов с задвижками на теплообменниках, которые обычно устанавливают последовательно по ходу газа, иногда – параллельно перед двумя последними слоями. Максимальная степень превращения в контактном аппарате 98,0 – 98,5%.
При двойном контактировании после первой стадии катализа из газовой смеси поглощается образовавшийся SO3 и на вторую стадию катализа поступает неокисленная часть исходного SO2 . Степень превращения 99,5 – 99,8%.
В современном сернокислотном производстве наиболее широко применяются контактные аппараты с горизонтальными стационарными слоями катализатора и отводом тепла в выносных теплообменниках. Применяются также контактные аппараты с внутренними теплообменниками либо с поддувом воздуха или газа.
При работе по короткой схеме на газах от сжигания серы или сероводорода применяется охлаждение газа между слоями в пароперегревателях, в газовоздушных теплообменниках или поддувом воздуха, что значительно упрощает конструкцию контактного узла.