Курсовая работа: Єдина теорія полів і взаємодій
Зрушення в області побудови Єдиної теорії поля намітився тільки після відкриття слабкої й сильної взаємодій. Першим кроком стала теорія електрослабого взаємодії, побудована Саламом, Глешоу й Вайнбергом в 1967 році на основі квантової електродинаміки (за неї вони одержали Нобелівську премію в 1979 році, тобто майже відразу). Потім в 1973 році була побудована теорія, що описує сильну взаємодію - квантова хромодинамика. На основі цих двох теорій і була створена Стандартна модель, всі пророкування якої підтвердилися, крім дотепер не виявленого бозона Хиггса.
2. ДОКЛАДНІШЕ ПРО ОБ'ЄДНАННЯ ВЗАЄМОДІЙ
Однієї з важливих особливостей фізики елементарних часток на початковому етапі було розходження між різними типами взаємодій. Виявилося, що існує всього чотири типи фундаментальних взаємодій: сильне, електромагнітне, слабке й гравітаційне.
Інтенсивність різних взаємодій при енергіях порядку декількох Мев характеризується наступними константами:
константа сильної взаємодії бs ~ 1,
константа електромагнітної взаємодії бe ~ 10-2 ,
константа слабкої взаємодії бw ~ 10-6 ,
константа гравітаційної взаємодії б ~ 10-38 .
В основі ідеї об'єднання різних взаємодій лежить залежність констант, слабкої електромагнітної й сильної взаємодій від відстані. З мал.1,3 видно як з'являється така залежність. На мал. 1 показаний механізм екранировки електричного заряду(*)електрона. Причина екранировки полягає в наступному: електрон може випускати віртуальні фотони, які у свою чергу можуть перетворюватися в електрон - позитронні пари e + e - , пари м+ м- м- , пари мезонів р+ р- р- , K+ K- і т.д. У результаті взаємодії негативно зарядженого електрона з віртуально, що утворяться парами, часток відбувається їхня поляризація (поляризація вакууму). Притягання між протилежно зарядженими частками приводить до екранировки негативного заряду вихідного електрона позитивно зарядженими e+ , м+ , р+ -мезонами, що розташовуються переважно ближче до електрона. Тому, при наближенні пробного заряду до електрона, він буде почувати розподіл поля віртуальних часток. Таким чином величина обмірюваного заряду буде залежати від відстані між пробною часткою й електроном. Це називається у квантовій електродинаміці екранировкою електричного заряду. Теоретичні розрахунки показують, що зі зменшенням відстані величина спостережуваного заряду росте, що й приводить до збільшення константи електромагнітної взаємодії.
Мал.1. Механізм екранировки електричного заряду
Мал. 2. Екранировка електричного заряду
Аналогічну ситуацію можна чекати й у квантовій хромодинамиці (КХД). Колірний заряд кварка буде екрануватися. При екранировці колірного заряду кварка в хромодинамиці навколо кольорового кварка утвориться поле віртуальних глюонов і кварк - антикваркових пар (мал. 3). Однак у квантової хромодинамиці в розподілі колірного поля є істотні відмінності. Таким чином глюони мають колірний заряд, вони взаємодіють не тільки із кварками, але й з один одним, що істотно міняє розподіл колірного заряду навколо кварка. Кольоровий кварк виявляється оточений переважно зарядами того ж кольору. Тому, наприклад, при наближенні пробного колірного заряду до червоного кварка він проникає усередину хмари червоного кольору й, отже, величина обмірюваного червоного заряду зменшується - спостерігається ефект антиекранировки. Т.ч. при зменшенні відстані між кольоровими кварками величина взаємодії зменшується. Це явище називається асимптотическої волею кварків в адроні на малих відстанях. Аналогічна ситуація має місце й для константи слабкої взаємодії, що також залежить від відстані.
Малість константи слабкої взаємодії при низьких енергіях обумовлена тим, що слабкі взаємодії відбуваються в результаті обміну частками, що мають більшу масу (mW ~ 80 ГеВ, mZ ~ 90 ГеВ). При енергії порядку 100 ГеВ константа слабкої взаємодії зростає до бw ~ 1/30.
Гіпотеза про те, що слабка взаємодія також обумовлена обміном деякою зарядженою часткою бути висунута Юкавой ще в тридцятих роках. Завершення ця ідея одержала в рамках єдиної теорії, що зв'язує електромагнітні й слабкі взаємодії, розвитий у роботах С. Вайнберга, А. Салама й Ш. Глешоу.
У цій теорії, що зветься "стандартна модель", передвіщається існування важких заряджених бозонів W+ і й нейтрального бозона Z0 зі спином 1, обмін якими й спричиняється слабку взаємодію. У теорії виникає також безмасове векторне поле, що ототожнюється з електромагнітним полем.За аналогією із сильною взаємодією члени одного сімейства, породжувані або - бозоном поєднуються в слабкі дублети
і
зі слабким ізоспином T = 1/2, яким приписуються значення T3 = +1/2 (нe ,u) і T3 = -1/2 (e,d). В антиферміонів проекції слабкого ізоспина мають протилежні знаки.
Слабкі взаємодії зі зміною заряду (заряджені струми) описуються станами
й
Вони відбуваються з випущенням або поглинанням або -бозонів. Слабкі процеси за участю Z 0-бозона були названі процесами з нейтральними слабкими струмами. У такий спосіб у моделі Вайнберга - Салама , , Z 0-бозони й -квант є квантами єдиного електрослабкого поля. Стандартна модель, що поєднує електромагнітне й слабке взаємодії, пророкує зв'язок між константами електромагнітної й слабкої взаємодій і співвідношення між масами заряджених і нейтральних бозонів
,
де и - кут Вайнберга. Витягнута з експериментів величина sin2 и= 0.23.
Виявлення в 1973 р. слабких нейтральних струмів з'явилося яскравим підтвердженням правильності стандартної моделі, у якій були передвіщені значення мас проміжних бозонів –m(Z0 ) ~ 90 ГеВ ; m(W+ , ) ~ 80 ГеВ
У стандартній моделі лептони й кварки групуються в дублети - покоління.
1 покоління 2 покоління 3 покоління
Заряджені струми в лептонних процесах виходять при русі по стовпцях. Переходів між поколіннями лептонів дотепер не спостерігалося, що зафіксовано в законі збереження лептонних зарядів Le , Lм і Lф . Константи цих слабких процесів однакові або поки не помітні. Заряджені струми в процесах із кварками можливі не тільки при русі по стовпцях, але й між поколіннями, тобто слабка взаємодія змішує кварки. Але слабкі константи кваркових процесів відрізняються друг від друга й від констант лептонних процесів.
d u + і s u +
Здавалося, що універсальність слабкої взаємодії порушується. Однак виявилося, що ці константи можна зв'язати між собою. Це вже в 1963 році було зроблено Н. Кабиббо, що для зв'язку констант в-розпаду й розпаду дивних часток увів параметр - кут Кабиббо (мал.5).
Мал. 5. Кут Кабиббо