Курсовая работа: Защита рабочих, служащих (персонала) и населения при аварии с выбросом сильнодействующих ядовитых веществ

принцип обязательности заблаговременной реализации мероприятий, направленных на предотвращение возникновения чрезвычайных ситуаций техногенного и природного характера и минимизацию их негативных психосоциальных последствий;

принцип учета экономических, природных и других особенностей территорий и степени реальной опасности возникновения чрезвычайных ситуаций техногенного и природного характера;

принцип максимально возможного, эффективного и комплексного использования имеющихся сил и средств, предназначенных для предотвращения чрезвычайных ситуаций техногенного и природного характера и реагирования на них.

1.2 Химическая технология и основные направления развития химической техники и технологии

Технология — наука о наиболее экономичных способах и процессах производства промышленных продуктов из природного сырья.

Способ производства — это совокупность всех операций, которые проходит сырье до получения из него продукта. Способ производства слагается из последовательных операций, протекающих в соответствующих машинах и аппаратах. Совокупность операций представляет собой химико-технологическую систему (ХТС). Описание ХТС называют технологической схемой. Операция происходит в одном или нескольких аппаратах (машинах); она представляет собой сочетание различных технологических процессов. В химических аппаратах-реакторах, как правило, одновременно протекаю гидравлические, тепловые, диффузионные и чисто химические (реакционные) процессы.

Технологию делят на механическую и химическую. В механической технологии рассматривают процессы, в которых изменяются форма или внешний вид и физические свойства материала, а в химической – процессы коренного преобразования состава, свойств и внутреннего строения вещества. Химические процессы, в свою очередь, во всех производствах сопровождаются механическими.

Исторически химическую технологию условно подразделяют на технологию неорганических и органических веществ, хотя оба раздела технологии объединяются общими принципами.

Совершенствование химической техники направлено на повышение производительности труда, улучшение качества готовой продукции и снижение ее себестоимости. Главные взаимосвязанные направления в развитии химической техники: 1) увеличение мощностей химико-технологических систем (ХТС) и отдельных аппаратов путем повышения их размеров; 2) интенсификация работы аппаратов; 3) механизация трудоемких процессов; 4) комплексная автоматизация химико-технологических систем и отдельных аппаратов с применением управляющих электронно-вычислительных машин (ЭВМ); 5) замена периодических процессов непрерывными; 6) снижение энергозатрат и максимальное использование теплоты химических реакций; 7) уменьшение числа стадий производства и переход к замкнутым (циклическим) системам; 8) создание безотходных производств.

Увеличение мощностей ХТС и отдельных аппаратов приводит к соответствующему повышению их производительности и улучшению условий работы, как правило, без возрастания штата рабочих, обслуживающих данный аппарат. Производительность П измеряется количеством выработанного продукта или переработанного сырья G за единицу времени г:

(1.1)

Увеличение размеров и производительности аппаратов снижает капиталовложения и облегчает возможность автоматизации производства. Исходя из экономической эффективности непрерывно увеличивают мощность вновь устанавливаемых машин и аппаратов. При чрезмерном возрастании масштабов отдельных установок и целых ХТС резко увеличиваются потери предприятия при аварийных остановках и плановых ремонтах. Поэтому во многих отраслях дальнейшее повышение единичной мощности не рационально.

Интенсификация работы аппаратов — повышение их производительности без увеличения размеров за счет улучшения режима работы. Интенсивностью работы аппарата I называют его производительность П, отнесенную к объему аппарата или к площади его сечения S:

(1.2)

Интенсификация достигается двумя путями: 1) улучшением конструкции аппаратов; 2) совершенствованием технологических процессов в аппаратах данного вида. Эти два пути тесно связаны между собой. С улучшением конструкции аппарата интенсивность химического процесса повышается. Увеличению интенсивности способствуют повышение температуры, давления и концентрации реагирующих масс, усиление перемешивания компонентов, увеличение поверхности соприкосновения между взаимодействующими веществами, применение катализаторов, а также механизация и автоматизация процессов.

Механизация — замена физического труда человека машинным.Механизациязакономерноповышает производительность труда за счет интенсификации работы аппаратуры и сокращения штата обслуживающего персонала. В большинстве химических производств основные операции уже механизированы. Однако загрузка сырья, выгрузка и транспортировка материалов еще не всегда выполняются машинами; именно механизация этих стадий производства и представляет главную проблему настоящего времени.

Комплексная автоматизация — применение приборов, позволяющих осуществлять производственный процесс без непосредственного участия человека, а лишь под его контролем. Автоматизация — высшая степень механизации, позволяющая резко увеличить производительность труда и улучшить качество продукции.

Замена периодических процессов непрерывными — принтерное для химической промышленности направление технического прогресса, тесно связанное с интенсификацией процессов, улучшением качества продукции и условий труда. Переход к непрерывным процессам, так же как применение конвейеров в механической технологии, повышает производительность труда.

Периодическим называется процесс, в котором порция сырья загружается в аппарат, проходит в нем ряд стадий обработки и затем из аппарата выгружаются все образовавшиеся вещества. Таким образом, от загрузки сырья до и выгрузки продукта проходит определенное время, в течение которого аппарат работает. В период же загрузки и выгрузки аппарат простаивает. Механизация и особенно автоматизация них операций затруднена, так как требует периодически действующих механизмов. Еще труднее автоматизировать периодические процессы, так как показатели режима, по которым производится автоматизация (температура, давление, концентрация веществ), меняются в течение всего периода реакции. Периодические процессы сложны в обслуживании. Продолжительность цикла периодического производственного процесса всегда больше, чем непрерывного; энергетические затраты выше. Все эти причины и побуждают заменять периодические процессы непрерывными.

Непрерывными называются процессы, в которых поступление сырья и выпуск продукции происходят непрерывно (или систематическими порциями) в течение длительного времени. При этом нет простоев оборудования, производительность аппаратов выше. Во всех точках аппарата соблюдаются постоянные температуры, концентрация веществ, давление и т. п., поэтому легко вести наблюдение за работой аппарата, механизировать загрузку сырья и выгрузку продукта, автоматизировать процесс. При этом, как правило, улучшается и качество продукции. Большинство химических производств уже работает непрерывно, оставшиеся периодические процессы постепенно заменяются непрерывными.

Однако в настоящее время еще нельзя сразу все производства перевести на непрерывные; в одних случаях это ухудшает качество продукции, в других — еще не найдены средства рациональной автоматизации и механизации процессов, особенно на маломощных и малогабаритных установках.

Снижение энергозатрат и максимальное использование теплоты химических реакций — важное направление химической техники. В настоящее время химические реакторы в большинстве крупнотоннажных производств сочетаются с теплообменными элементами, которые служат для нагрева исходных веществ до температуры реакции с одновременным охлаждением продуктов превращения или же для получения товарного водяного пара в котлах-утилизаторах за счет теплоты сильно экзотермических процессов. При этом теплообменники нередко имеют более сложное устройство, чем собственно химические реакторы, и образуют вместе с реакторами энергохимический агрегат. Соответственно происходит превращение химической технологии в энерготехнологию. Это тем более важно, что в настоящее время все острее и острее встает проблема обеспечения человечества дешевой, доступной и эффективно используемой энергией, поскольку традиционные ее источники (нефть, природный газ, уголь, древесина, торф и т. п.) расходуются быстрыми темпами и запасы этих источников уменьшаются гораздо быстрее, чем происходит естественное их восполнение.

Уменьшение числа стадий производства и переход к замкнутым (циклическим) системам приводит к снижению затрат на капитальное строительство и уменьшению себестоимости продукции. Так, прямое окисление метана до формальдегида позволит трехстадийный процесс (получение синтез-газа → синтез метанола → окисление метанола) заменить одностадийным. Переход к циклическим системам, например, в производстве серной кислоты с применением кислорода и повышенного давления позволит в 3 раза снизить число аппаратов в технологической схеме. При этом резко шитом количество диоксида серы в отходящих газах, т. е. одновременно решается и экологическая проблема. Сегодня пока еще не все многостадийные процессы могут быть переведены на одностадийные или циклические

Создание безотходных производств решает комплексно экологическую проблему и снижение себестоимости продукции благодаря полному использованию всех компонентов сырья. Одним из наиболее рациональныхпутейорганизациипроизводств, приближающихся к безотходным, служит циркуляция реакционной смеси и теплоносителей (воздуха, воды) в отдельных процессах и реакторах, а в особенности создание циркуляционных химико-технологических систем (ХТС) целого производства. Этой же цели служит кооперация чисто химических производств с другими (например, металлургическими), позволяющая перерабатывать не используемые ранее компоненты сырья в продукты, ценные для народного хозяйства. К безотходной технологии можно приближаться, вводя в технологические схемы специальные аппараты для очистки отходящих газов и сточных вод.

Оценивая каждое из указанных направлений в развитии химической техники, необходимо отметить, что во многих случаях следует комплексно использовать их, дополняя совершенствованием организации и управления производством, расширением и углублением научных исследований в области химической технологии, а также улучшением проектной деятельности соответствующих организаций.

Новым мощным средством повышения эффективности ряда производств следует считать внедрение атомной техники, плазменной и лазерной технологии, использование фотохимических, радиационно-химических и биохимических процессов.

Применение атомной энергии позволит получить недостижимые ранее температуры в сотни тысяч градусов и прежде всего низкотемпературную плазму (1000—10 000 К).

Использование плазмохимических процессов дает возможность осуществить эндотермические превращения, равновесие которых сильно смещено в сторону заданных целевых продуктов лишь при очень высокой температуре (10— 10 К). К таким процессам относятся: прямой синтез N0; получение ацетилена из метана и бензина; прямой синтез дициана; получение цианистого водорода из азота и углеводородов; синтезы разнообразных соединений фтора и т. п.

Лазерная техника позволит синтезировать твердые тела с тонко направленной кристаллической структурой и заданными свойствами, в том числе катализаторы, полупроводники, молекулярные сита, адсорбенты и т. п.

Фотохимические реакции, вызываемые или ускоряемые действием световой энергии, происходят как в природе, так и в промышленности. Хлорирование и бромирование углеводородов, синтез полистирола, сульфохлорирование парафинов, а также фотосинтез полистирола, сульфохлорирование парафинов, а также фотосинтез с помощью хлорофилла относятся к разряду таких процессов.

Радиационно-химические реакции, происходящие при воздействии ионизирующих излучений высокой энергии, позволят интенсифицировать химико-технологический процесс, проводить синтез органических соединений, осуществляемых пока только в природе (различные белковые препараты, ферментативные вещества и др.), или существенно улучшить структуру промышленных материалов (например, шин, пластических масс, биополимерных структур и т. п.).

К-во Просмотров: 195
Бесплатно скачать Курсовая работа: Защита рабочих, служащих (персонала) и населения при аварии с выбросом сильнодействующих ядовитых веществ