Курсовая работа: Зависимость точности визуального тест-определения нитрит-иона на основе пенополиуретана от способа построения цветовой шкалы
Метод позволяет определить до 1 ppmNO2 - .
Реакция с 2,6-ксиленолом. В растворах с оптимальной кислотностью (серная кислота-вода-уксусная кислота 5:4:1 ) при реакции 2,6-ксиленола с HNO2 образуется 4-нитрозо-2,6-ксиленол, светопоглощение которого при 307нм пропорционально концентрации NO2 - в диапазоне 0-10 мкг\мл. Мешают галогениды и их необходимо удалить осаждением раствором Ag2 SO4 .
Реакция с тиогликолевой кислотой. При взаимодействии нитрита с тиогликолевой кислотой в слабокислой среде образуется нитрозотиогликолевая кислота.
Это нитрозосоединение используется для колориметрического определения NO2 - в интервале концентраций 10-100 мг\л. Мешают ионы Fe(II) (при соотношении Fe:NO2 - > 50), Co(II), MnO4 - , WO4 2- .
Реакция с бруцином. Разработан быстрый колориметрический метод с использованием бруцина в качестве хромофорного реагента в растворе серной кислоты.
Ионы NO2 - дают окрашенные соединения в более разбавленной кислоте, чем ионы NO3 - ( 1:5 и 1:1 соответственно).
На этой основе разработан метод фотометрического определения NO2 - в щелочных растворах.
Реакция с риванолом. Нитрит-ионы образуют интенсивную окраску при реакциях с риванолом (лактатом 2-этокси-6,9-диаминоакридина) в 1,8М НСl. Соответствие с законом Бера наблюдается при 515 нм для диапазона концентраций 0,2-1,2 мкг/мл NO2 - . Не мешают ионы NO3 - , BO3 3- . Реакция с тиомочевиной. При реакции азотистой кислоты с тиомочевиной образуется роданистоводородная кислота, которая при взаимодействии с введенным Fe(III) дает окрашенный к комплекс. Метод применяют для определения 2-12 мкг/мл NO2 - . Хотя этот метод менее чувствителен, чем классический метод Грисса с сульфаниловой кислотой, но простота методики является его преимуществом. Реакция с 2,3-диаминонафталином. Этот реагент использован для спектрофотометрического и флуориметрического определения нитрит-иона. Определению мешают Sn(II), Se, Al, Bi, Cr(III), Ca, Ni, Fe. Ионы NH4 + , NO3 - не мешают. Чувствительность спектрофотометрического определения равна 1 мкг\мл, флуориметрического - 0,0065 мкг\мл. В качестве аналитических реагентов для фотометрического определения нитрит-ионов используют некоторые красители, например, бриллиантовый зеленый и кристаллический фиолетовый. Этим методом определяют 5. 10-5 моль/л NO2 - (2.3 мг/л). Реакцию с сульфидом железа(II) используют для количественного определения нитрита. Чувствительность реакции 2,5 мкг\мл. Методики спектрофотометрического определения нитрит-ионов имеют хорошие метрологические характеристики, однако для анализа окрашенных и мутных растворов требуется трудоёмкая пробоподготовка. Кроме того, реагенты, используемые для проведения реакций диазотирования и азосочетания, часто нестабильны (сульфаниловая кислота) и канцерогенны (1-нафтиламин, N,N-диметиланилин).
1.1.6 Кинетические методы определения нитрит-ионов
Кинетический метод основан на окислении комплексоната марганца(II) до комплексоната марганца(III) посредством H2 O2 , катализируемом нитритом. Метод позволяет определить 1. 10-5 г/л NO2 - с ошибкой + 10% и 3. 10-7 г/л с ошибкой + 20%. [1, с. 114]
1.2 Тест-методы
Тест-методы определения нитрит-ионов
1.2.1 Общая характеристика тест-методов химического анализа
На протяжении столетий химический анализ осуществлялся в лабораториях. Это было связано с необходимостью использования специальной химической посуды и оборудования, а также не всегда безвредных химических веществ, что требовало как минимум хорошей вентиляции, длительных и трудоёмких операций по разделению сложных смесей веществ. В значительной мере эти факторы действуют и в настоящее время, а потому миллионы химических анализов проводятся в условиях аналитических лабораторий, причём не только химических, но и физических, и биологических. В последнее время химический анализ перемещается из лабораторий в места, где находится анализируемый объект. Это одна из важных тенденций развития аналитической химии.
Потребности во внелабораторном анализе огромны. Анализ «на месте» имеет много достоинств. Экономятся время и средства на доставку проб в лабораторию и на сам, более дорогой, лабораторный анализ.
Есть группа средств, решающих задачу самого массового контроля вне лаборатории. Речь идёт о тест-методах анализа и соответствующих средствах для него.
Тест-методы - это экспрессные, простые и относительно дешёвые приёмы обнаружения и определения веществ, не требующие существенной подготовки пробы, сложных стационарных приборов, лабораторного оборудования (и вообще условий лаборатории), а главное – квалифицированного персонала.
По принципу действия тест-методы условно можно разделить на: химические, биохимические и биологические.
Основа химических тест-методов – аналитические реакции и реагенты, позволяющие визуально или с помощью портативного прибора наблюдать аналитический эффект. [8]
Чаще всего аналитическим сигналом в тест-методах служит появление или изменение окраски носителя, интенсивность окрашивания сорбента или длина окрашенной зоны индикаторной трубки. В основе возникновения аналитического сигнала лежат такие явления:
- светопоглощение;
- диффузное отражение;
- адсорбция;
- ионный обмен;
- экстракция;
- концентрирование;
- химические и ферментативные реакции.
Все эти явления тесно связаны друг с другом. Известно, что определению следовых количеств веществ, как правило, предшествуют стадии их экстракционного концентрирования или ионообменного разделения. Ионообменные материалы преимущественно используют для разделения веществ, а не для концентрирования, так как прежде чем анализировать поглощённые ионы, их необходимо элюировать, что влечёт за собой разбавление и, следовательно, потерю чувствительности. Лучшего результата можно достичь, измеряя аналитический сигнал определяемого элемента непосредственно на поверхности ионообменника или другого сорбента.