Курсовая работа: Железоуглеродистые сплавы. Медь и ее сплавы
Объемноцен
трированная кубическая
a-раствор (a-феррит), g-раствор (аустенит) и d-раствор (d-феррит), и графит (Г).
В метастабильном состоянии в железоуглеродистые сплавы встречаются a-, g-, d-растворы и карбид железа Fe3C — цементит (Ц). Области устойчивости железоуглеродистых сплавов в однофазных и двухфазных состояниях указаны на диаграммах. При некоторых условиях в железоуглеродистых сплавах могут существовать в равновесии и три фазы. При температурах НВ возможно перитектическое равновесие d + g + Ж, E’C’F’ — эвтектическое стабильное равновесие g + Ж + Г; при ECF — эвтектическое метастабильное равновесие g + Ж + Ц; при P'S'K' — эвтектоидное стабильное равновесие a + g + Г', при PSK — эвтектоидное метастабильное равновесие a + g + Ц.
Диаграммы а и б вычерчиваю и в одной координатной системе (рис. 1, в). Такая сдвоенная диаграмма наглядно характеризует относительное смещение однотипных линий равновесия и облегчает анализ железоуглеродистых сплавов, содержащих стабильные и метастабильные фазы одновременно.
Основной причиной появления в железоуглеродистых сплавах высокоуглеродистой метастабильной фазы в виде цементита являются трудности формирования графита.
Образование графита в жидком растворе Ж и твёрдых растворах a и g связано с практически полным удалением атомов железа из участков сплава, где зарождается и растет графит. Оно требует значительных атомных передвижений. Если железоуглеродистые сплавы охлаждаются медленно или длительно выдерживаются при повышенных температурах, атомы железа успевают удалиться из мест, где формируется графит, и тогда возникают стабильные состояния.
При ускоренном охлаждении и недостаточных выдержках удаление малоподвижных атомов железа задерживается, почти все они остаются на месте, и тогда в жидких и твёрдых растворах зарождается и растет цементит. Необходимая для этого диффузия легкоподвижных при повышенных температурах атомов углерода, не требующая больших выдержек, успевает происходить и при ускоренном охлаждении.
Помимо основных фаз, указанных на диаграммах, в технических железоуглеродистые сплавы встречаются небольшие количества и др. фаз, появление которых обусловлено наличием примесей. Часто встречаются сульфиды (FeS, MnS), фосфиды (Fe3P), окислы железа и примесей (FeO, MnO, Al2O3, Cr2O3, TiO2 и др.), нитриды (FeN, AlN) и др. неметаллические фазы. Точечными линиями на диаграммах отмечены точки Кюри, наблюдающиеся в железоуглеродистых сплавах в связи с магнитными превращениями феррита (768°С) и цементита (210°С).
1.1.2 Строение железоуглеродистых сплавов
Строение железоуглеродистых сплавов определяется составом, условиями затвердевания и структурными изменениями в твёрдом состоянии.
В зависимости от содержания углерода железоуглеродистые сплавы делят на стали и чугуны. Стали с концентрацией углерода, меньшей чем эвтектоидная S' и S, называют доэвтектоидными, а более высокоуглеродистые — заэвтектоидными. Чугуны с концентрацией углерода, меньшей чем эвтектическая C1 и С, называют доэвтектическими, а более высокоуглеродистые — заэвтектическими.
Затвердевание сталей, содержащих до 0,5% С, начинается с выпадения кристаллов 8-раствора обычно в виде дендритов. При концентрациях углерода до 0,1% кристаллизация заканчивается образованием однофазной структуры d-раствора. Стали с 0,1—0,5% С после выделения некоторого количества 8-раствора испытывают перитектическое превращение Ж + d —> g. В интервале концентраций 0,10—0,16% С оно приводит к полному затвердеванию, а в интервале 0,16—0,50% С кристаллизация завершается при охлаждении до температуры линии IE. В железоуглеродистых сплавах с 0,5—4,26% С кристаллизация начинается с выделения g-раствора также в виде дендритов. Стали полностью затвердевают в интервале температур, ограниченном линиями ВС и IE, приобретая однофазную аустенитную структуру. Затвердевание же чугунов, начинаясь с выделения избыточного (первичного) gраствора, заканчивается эвтектическим распадом остатка жидкости по одному из трёх возможных вариантов: Ж ®g+ Г, Ж ® g+ Ц или Ж ® (+ Г + Ц.
В первом случае получаются т. н. серые чугуны, во втором — белые, в третьем — половинчатые. В зависимости от условий кристаллизации графит выделяется в виде разветвленных или шаровидных включений, а цементит — в виде монолитных пластин или проросших разветвленным аустенитом.
В железоуглеродистых сплавах, содержащих более 4,26—4,3% С, кристаллизация переохлажденного ниже линии D1C1 расплава в условиях медленного охлаждения начинается с образования первичного графита разветвленной или шаровидной формы. В условиях ускоренного охлаждения (при переохлаждениях ниже линии DC) образуются пластины первичного цементита. При промежуточных скоростях охлаждения выделяются и графит, и цементит. Кристаллизация заэвтектических чугунов, так же как и доэвтектических, завершается распадом остатка жидкости на смесь gраствора с высокоуглеродистыми фазами.
Строение затвердевших железоуглеродистых сплавов существенно изменяется при дальнейшем охлаждении. Эти изменения обусловлены полиморфными превращениями железа, уменьшением растворимости в нём углерода, графитизацией цементита. Структура может изменяться в твёрдом состоянии в результате процессов рекристаллизации твёрдых растворов, сфероидизации кристаллов (из неравноосных становятся равноосными), коалесценции (одни кристаллы цементита укрупняются за счёт других) высокоуглеродистых фаз.
1.1.3 Полиморфные превращения железоуглеродистых сплавов
Полиморфные превращения железоуглеродистых сплавов связаны с перестройками гранецентрированной кубической (ГЦК) решётки g-Fe и объёмноцентрированной решётки (ОЦК) a- и d-Fe.
В зависимости от условий охлаждения и нагревания полиморфные превращения твёрдых растворов происходят разными путями. При небольших переохлаждениях (и перегревах) имеет место т. н. нормальная перестройка решёток железа, осуществляющаяся в результате неупорядоченных индивидуальных переходов атомов от исходной фазы к образующейся; она сопровождается диффузионным перераспределением углерода между фазами.
При больших скоростях охлаждения или нагревания полиморфные превращения твёрдых растворов происходят бездиффузионным (мартенситным) путём. Решётка железа перестраивается быстрым сдвиговым механизмом в результате упорядоченных коллективных смещений атомов без диффузионного перераспределения углерода между фазами. Например, при закалке железоуглеродистых сплавов в воде g-раствор переходит в a-раствор того же состава. Этот пересыщенный углеродом a-раствор называют мартенситом. Превращения при промежуточных условиях могут совмещать в себе сдвиговую перестройку решётки железа с диффузионным перераспределением углерода (бейнитное превращение). Формирующиеся при этом структуры существенно различны.
В первом случае образуются равноосные с малым числом дефектов кристаллы твёрдого раствора.
Во втором и третьем — игольчатые и пластинчатые кристаллы с многочисленными двойниками и линиями скольжения. Структура железоуглеродистых сплавов изменяется также и в связи с изменением растворимости углерода в a и g-железе при охлаждении и нагревании. При охлаждении растворы пересыщаются углеродом и выделяются кристаллы высокоуглеродистых фаз (цементита и графита). При нагревании имеющиеся высокоуглеродистые фазы растворяются в a и g-фазах.
Зарождение и рост кристаллов цементита в пересыщенных растворах происходит обычно с большей скоростью, чем образование графита, и поэтому железоуглеродистые сплавы часто метастабильны. В зависимости от переохлаждения цементит, выделяющийся из твёрдого раствора, может иметь вид равноосных кристаллов, пограничной сетки, пластин и игл.
При высокотемпературных выдержках кристаллы цементита сфероидизируются; может происходить и процесс коалесценции. Если железоуглеродистые сплавы, содержащие цементит, длительно выдерживать при повышенных температурах, происходит графитизация — зарождается и растет графит, а цементит растворяется, этот процесс используется при производстве изделий из графитизированной стали и ковкого чугуна. Важную роль при формировании структуры железоуглеродистых сплавов в твёрдом состоянии играет эвтектоидный распад т-раствора на a-раствор и высокоуглеродистую фазу. При очень малых переохлаждениях образуются феррит и графит, при небольшом увеличении переохлаждения — феррит и сфероидизированный цементит, затем смесь феррита и цементита приобретает пластинчатое строение перлита, тем более тонкое, чем больше переохлаждение. При переохлаждениях, измеряемых сотнями градусов, эвтектоидный распад подавляется, и g-раствор превращается в мартенсит. Строение железоуглеродистых сплавов можно изменять в широких пределах. Основными методами управления структурой железоуглеродистых сплавов являются изменения химического состава, условий затвердевания, пластической деформации, термической и термомеханической обработок.
Меняя фазовый состав, величину, форму, распределение и дефектность кристаллов, можно широко варьировать и свойства железоуглеродистых сплавов.
Например, важнейшие при эксплуатации железоуглеродистых сплавов механические свойства изменяются в следующих пределах: твёрдость от 60 до 800 HB; предел прочности 2·104—3,5·106н/см2 (2·103—3,5·105 кгс/см2); относительное удлинение от 0 до 70%.
1.2 Производство чугуна и доменный процесс
Чугун это железоуглеродистый сплав, содержащий более 2% углерода. Кроме углерода, в нем всегда присутствуют кремний (до 4%), марганец (до 2%), а также фосфор и сера. Чугун является основным исходным материалом для получения стали, на что расходуется примерно 80-85% всего чугуна.
Чугун выплавляют в печах шахтного типа – доменных печах. Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды, оксидом углерода, водородом и твёрдым углеродом, выделяющимся при сгорании топлива в печи.