Курсовая работа: Живлення рослин вуглецем

Маса рослинного покриву Землі складає більш як 1800 млрд. т сухої речовини, що енергетично еквівалентно 30 • 1021 Дж. Ця цифра відповідає відомим запасам енергії корисних копалин. Ліси становлять близько 68 % біомаси суші, трав'янисті екосистеми — 16, агрофітоценози — лише 8 %. В цілому на Землі з участю фотосинтезу щороку створюється 173 млрд. т сухої речовини.

Енергетичний еквівалент щорічної біопродуктивності на Землі приблизно в 10 разів більший за річну енергетичну потребу всього населення земної кулі.

Поступово, всього лише сотні мільйонів років тому, кількість первинної продукції живих організмів на Землі зрівноважилася з її витратами в процесах дихання, бродіння, окиснення. На планеті стабілізувався добре врівноважений кругообіг вуглецю та інших органогенів, насамперед азоту, фосфору, калію, що стало одним із найважливіших факторів формування оптимального для життя екологічного середовища.

Кругообіг кисню, вуглекислого газу, азоту та інших елементів, які беруть участь у процесах життєдіяльності рослин, створив і підтримує газовий склад сучасної атмосфери, потрібний для життя на Землі.

Однак науково необґрунтована інтенсифікація діяльності людства, поява нових екологічно небезпечних джерел енергії, наприклад атомного розпаду, призвели до сучасної екологічної кризи. Вміст СО2 в атмосфері почав збільшуватися, що може різко вплинути на тепловий режим планети. СО2 та водяна пара поглинають інфрачервоні промені, що відбиваються від Землі в космос і створюють так званий парниковий ефект. За даними агентства з охорони природи США, це загрожує підвищенням температури на планеті в найближче століття на 3...9 °С із наступними катастрофічними наслідками. Фотосинтез перешкоджає нагромадженню СО2 , захищає планету від перегріву. Крім того, постійний вміст кисню (21 %) в атмосфері забезпечує існування озонового екрану на висоті 25 км. Озон — О3 — створюється в результаті фотодисоціації молекул О2 під дією сонячної радіації. Він захищає все живе від згубної дії ультрафіолетових променів (240...290 нм). Забруднення атмосфери, знищення лісів призводить до зниження вмісту кисню, виникнення озонових дірок. Звідси прямий зв'язок фотосинтезу з охороною навколишнього середовища не в регіональних, а в глобальних масштабах.

Якщо раніше фотосинтез асоціювався з біологією, а правильніше, з фізіологією рослин, то останнім часом ним серйозно зацікавилися технологи. Виявилося, що рослинний організм, здатний перетворювати світлову енергію на електричний струм, вилучає з води водень — цінне, екологічно безпечне, але поки що дороге паливо, фіксує вільний азот повітря та багато іншого, що може бути використане в фітобіотехнології.

Вивчення механізму фотосинтезу дасть змогу здійснювати цей процес у промислових масштабах поза рослиною, що має вирішальне значення в енергетиці майбутнього.

Не менш важливе значення фотосинтезу як основи одержання продовольства, кормів, технічної сировини. Глобально чиста продуктивність фотосинтезу за розрахунками становить 78 • 109 т вуглецю за рік, з яких 7 % — безпосередньо або через тваринні організми використовуються як продукти харчування, паливо, сировина. Використання корисних копалин як палива експоненційно зростало на 4,3 % за рік протягом останнього сторіччя й на початок XXIст. приблизно зрівнялося з наростанням біомаси.

Незважаючи на високу ефективність початкових стадій фотосинтезу (95 %), в урожай переходить менш як 1...2 % сонячної енергії, втрати якої зумовлені неповним поглинанням світлових променів, лімітуванням процесів на рівні біохімії та фізіології. Рослинність всіх континентів фіксує у вигляді хімічної енергії приблизно 1...2 % ФАР.

Згідно з теоретичними розрахунками, максимальна енергетична ефективність може бути до 28 % ФАР. При коефіцієнті корисної дії 3...5 % ФАР можна одержати до 60 т/га органічної маси. В зв'язку з цим особливо актуальними стають питання розробки теоретичних основ управління фотосинтезом, дослідженням його як єдиного процесу запасання сонячної енергії, закономірностей його регулювання та адаптації до зовнішніх умов. Визначальна залежність людства від фотосинтезу особливо проявляється в наш час, коли невідповідність між виробництвом сільськогосподарської продукції та чисельністю народонаселення стає все більш загрозливою.

Подальше інтенсивне дослідження законів еволюції біосфери у зв'язку з фотосинтетичним процесом, їх прогнозування, приведення в агрокліматичну відповідність різних регіонів планети вселяє впевненість, що за оптимальних умов агрофітоценози зможуть забезпечити їжею більш як 10... 12 млрд. чоловік — найнижчий імовірний рівень населення нашої планети. Однак для цього слід перейти до ери стабільного рівномірно розподіленого споживання продуктів харчування на помірному рівні, який дав би змогу зберегти буферну здатність глобального циклу вуглецю.

І нарешті, слід підкреслити світоглядне значення фотосинтезу, бо вивчення цього процесу має привести нас до розкриття кардинальної проблеми — з'ясування того, як виникло життя на Землі. Адже в процесі фотосинтезу щомиті неорганічна речовина СО2 та Н2 О перетворюються на органічну, а, як відомо, саме в цьому і полягає суть переходу від передбіологічної еволюції до біологічної. Отже, фотосинтез як явище і наукова проблема екстраординарний.

З нагромадженням знань про особливості даного процесу змінювалась і його назва. Тепер вважають недостатнім класичне визначення, згідно з яким фотосинтез — це утворення зеленими рослинами органічних сполук із СО2 і Н2 О за допомогою квантів сонячного світла. В наш час фотосинтез визначають як фототрофну функцію бактерій, найпростіших, водоростей та вищих рослин.

Фототрофна функція — це сукупність процесів поглинання, перетворення та використання в багатьох ендорганічних реакціях світлових квантів, у ході яких відбувається первинне становлення пластичних та енергетичних ресурсів життя на нашій планеті.

1.2 Загальне рівняння фотосинтезу та походження кисню

Датою відкриття процесу фотосинтезу вважають 1771 рік. Англійський вчений Д. Прістлі звернув увагу на зміну складу повітря внаслідок життєдіяльності тварин. У присутності зелених рослин повітря знову ставало придатним як для дихання, так і для горіння. В подальших роботах учених (Й. Інгенхауз, Ж. Сенеб'є, Н. Соссюр, Ж. Бусенго) було встановлено, що зелені рослини із повітря поглинають вуглекислий газ, із якого за участі води на світлі утворюється органічна речовина. Саме цей процес у 1877 р. німецький вчений В. Пфеффер назвав фотосинтезом. Величезне значення для розкриття суті фотосинтезу мав закон збереження енергії, сформульований Р. Майєром (1845). Згідно з цим законом, енергія, яку використовують рослини, — це енергія Сонця, яку в процесі фотосинтезу рослини перетворюють на хімічну енергію.

Загальне рівняння фотосинтезу не досить точно передає суть цього процесу, адже, згідно з цим рівнянням, можна припустити, що частина виділеного О2 походить від СО2 , тоді як насправді весь кисень утворюється з води в ході фотолізу:

Тому доцільніше розділити його на складові частини:

де А — акцептор електронів і протонів.

Згідно з цим рівнянням, в основі суті фотосинтезу лежить окисно-відновна реакція. За участі хлорофілу та енергії сонячних квантів вода фотоокиснюється, в результаті чого виділяються кисень та водень, останній і відновлює СО2 до рівня вуглеводів. Ці реакції відбуваються відповідно в світлову та темпову стадії фотосинтезу.

Впродовж сторіччя після відкриття Д. Прістлі (1771) фотосинтезу вчені з'ясовували його суть, встановили учасників і кінцеві продукти, що одержуються в результаті цього процесу.

Довгий час вважали загальноприйнятим, що вуглеводи утворюються з вуглецю та водню, а кисень виділяється з вуглекислоти. Ця гіпотеза, як виявилося пізніше, була абсолютно неправильною. Вперше в 1893 р. О. М. Бах передбачив, що асиміляція СО2 в процесі фотосинтезу нічого спільного з відщепленням кисню від СО2 не має, а пов'язана з окисно-відновним процесом, який відбувається з участю водню та гідроксилу води, причому кисень виділяється з води.

Теорію походження кисню з вуглекислого газу спростував Корнеліус Ван Ніль, який в Станфордському університеті (США) вивчав метаболізм різних фотосинтезуючих бактерій. Він з'ясував, що для фотосинтезу пурпурних сірчаних бактерій необхідний сірководень, а в результаті цього процесу всередині бактеріальних клітин нагромаджується сірка:

Після серії дослідів у 1937—1941 pp. учений зробив сміливе узагальнення: первинна фотохімічна реакція фотосинтезу полягає саме в фотодисоціації води, а не в розкладанні СО2 , й запропонував сумарне рівняння фотосинтезу:

В цьому рівнянні Н2 А може бути водою або іншим відновником. Отже, бактерії, здатні до фотосинтетичної асиміляції СО2 , за винятком ціанел, використовують H2 S, H2 , СН3 , а тому в процесі фотосинтезу не виділяють кисень. Такий тип фототрофного живлення дістав назву фоторедукції. Для вищих рослин і водоростей Н2 А — це вода. Інакше кажучи, Ван Ніль припустив, що саме вона, а не вуглекислий газ розкладається в процесі фотосинтезу. Отже, рівняння фотосинтезу тепер матиме такий вигляд:

К-во Просмотров: 288
Бесплатно скачать Курсовая работа: Живлення рослин вуглецем