Лабораторная работа: Автоматизированный априорный анализ статистической совокупности в среде MS Excel 2

4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?

5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?

6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?

2. Выводы по результатам выполнения лабораторной работы

I . Статистический анализ выборочной совокупности

Задача 1. Рассчитанные выборочные показатели представлены в двух таблицах - табл. 3 и табл. 5. На основе этих таблиц формируется единая таблица (табл. 2) значений выборочных показателей, перечисленных в условии Задачи 2.

Таблица 2 - Описательные статистики выборочной совокупности

Обобщающие статистические показатели совокупности по изучаемым признакам Признаки
Среднегодовая стоимость основных производственных фондов Выпуск продукции
Средняя арифметическая (), млн. руб.
Мода (Мо), млн. руб.
Медиана (Ме), млн. руб.
Размах вариации (R), млн. руб.
Дисперсия ()
Среднее квадратическое отклонение (), млн. руб.
Коэффициент вариации (Vσ ), %

Задача 2.

3а). Степень колеблемости признака определяется по значению коэффициента вариации V s в соответствии с оценочной шкалой колеблемости признака:

0%<V s 40% - колеблемость незначительная;

40%< V s 60% - колеблемость средняя (умеренная);

V s >60% - колеблемость значительная.

3б). Степень однородности совокупности по изучаемому признакудля нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V s . Если V s 33% , то по данному признаку расхождения между значениями признака невелико. Если при этом единицы наблюдения относятся к одному определенному типу, то изучаемая совокупность однородна.

3в). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл. 3 (с конкретными числовыми значениями границ диапазонов).

Таблица 3 - Распределение значений признака по диапазонам рассеяния признака относительно

Границы диапазонов, млн. руб. Количество значений xi , находящихся в диапазоне Процентное соотношение рассеяния значений xi по диапазонам, %
Первый признак Второй признак Первый признак Второй признак Первый признак Второй признак
А 1 2 3 4 5 6
[………….;………….] [………….;……….]
[………….;………….] [………….;……….]
[………….;………….] [………….;……….]

На основе данных табл. 9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм» , справедливому для нормальных и близких к нему распределений:

68,3% значений располагаются в диапазоне (),

95,4% значений располагаются в диапазоне (),

99,7% значений располагаются в диапазоне ().

Если полученная в табл. 9 структура рассеяния х i по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.

Расхождение с правилом «трех сигм» может быть существенным . Например, менее 60% значений х i попадают в центральный диапазон () или значительно более 5% значения х i выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.

Задача 3. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков .

Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V s признаков.

Задача 4. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.

Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов » к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).

1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.

Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.

2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo , Me ) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.

Нормальное распределение является симметричным , и для него выполняются соотношения:

=Mo=Me

К-во Просмотров: 191
Бесплатно скачать Лабораторная работа: Автоматизированный априорный анализ статистической совокупности в среде MS Excel 2