Лабораторная работа: Автоматизированный априорный анализ статистической совокупности в среде MS Excel 2
4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать?
2. Выводы по результатам выполнения лабораторной работы
I . Статистический анализ выборочной совокупности
Задача 1. Рассчитанные выборочные показатели представлены в двух таблицах - табл. 3 и табл. 5. На основе этих таблиц формируется единая таблица (табл. 2) значений выборочных показателей, перечисленных в условии Задачи 2.
Таблица 2 - Описательные статистики выборочной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам | Признаки | |
Среднегодовая стоимость основных производственных фондов | Выпуск продукции | |
Средняя арифметическая (), млн. руб. | ||
Мода (Мо), млн. руб. | ||
Медиана (Ме), млн. руб. | ||
Размах вариации (R), млн. руб. | ||
Дисперсия () | ||
Среднее квадратическое отклонение (), млн. руб. | ||
Коэффициент вариации (Vσ ), % |
Задача 2.
3а). Степень колеблемости признака определяется по значению коэффициента вариации V s в соответствии с оценочной шкалой колеблемости признака:
0%<V s 40% - колеблемость незначительная;
40%< V s 60% - колеблемость средняя (умеренная);
V s >60% - колеблемость значительная.
3б). Степень однородности совокупности по изучаемому признакудля нормального и близких к нормальному распределений устанавливается по значению коэффициента вариации V s . Если V s 33% , то по данному признаку расхождения между значениями признака невелико. Если при этом единицы наблюдения относятся к одному определенному типу, то изучаемая совокупность однородна.
3в). Для оценки количества попаданий индивидуальных значений признаков xi в тот или иной диапазон отклонения от средней , а также для выявления структуры рассеяния значений xi по 3-м диапазонам формируется табл. 3 (с конкретными числовыми значениями границ диапазонов).
Таблица 3 - Распределение значений признака по диапазонам рассеяния признака относительно
Границы диапазонов, млн. руб. | Количество значений xi , находящихся в диапазоне | Процентное соотношение рассеяния значений xi по диапазонам, % | ||||
Первый признак | Второй признак | Первый признак | Второй признак | Первый признак | Второй признак | |
А | 1 | 2 | 3 | 4 | 5 | 6 |
[………….;………….] | [………….;……….] | |||||
[………….;………….] | [………….;……….] | |||||
[………….;………….] | [………….;……….] |
На основе данных табл. 9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм» , справедливому для нормальных и близких к нему распределений:
68,3% значений располагаются в диапазоне (),
95,4% значений располагаются в диапазоне (),
99,7% значений располагаются в диапазоне ().
Если полученная в табл. 9 структура рассеяния х i по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.
Расхождение с правилом «трех сигм» может быть существенным . Например, менее 60% значений х i попадают в центральный диапазон () или значительно более 5% значения х i выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.
Задача 3. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков .
Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V s признаков.
Задача 4. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов » к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ( ).
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo , Me ) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным , и для него выполняются соотношения:
=Mo=Me