Лабораторная работа: Дифференцирующие и интегрирующие цепи
Тогда при точном дифференцировании для выходного сигнала получим:
, (13)
откуда следует, что коэффициент передачи идеального дифференцирующего четырёхполюсника () равен:
(14)
Рассмотренная нами дифференцирующая цепь (рис.2) имеет коэффициент передачи:
(15)
Из сравнения (14) и (15) видно, что рассмотренная нами цепь будет тем ближе к идеальной, чем лучше выполняется условие
wt0 << 1 (16)
Причём, для всех частот в спектре входного сигнала. Для упрощения оценки в неравенство (16) обычно подставляют максимальную частоту в спектре входного сигнала wm t0 << 1.
Итак, чтобы продифференцировать некоторый сигнал, необходимо найти его спектральный состав и собрать RC-цепь с постоянной времени t0 << wm -1 , где wm – максимальная частота в спектре входного сигнала.
Отметим, что для импульсных сигналов верхнюю границу полосы частот можно оценить по формуле (2) wm = 2p/tu , где tu – длительность импульса. Т.о., в этом случае условие дифференцирования запишется в виде
t0 << tu (17)
Совершенно аналогично можно показать, что для удовлетворительного интегрирования требуется выполнение условия
wt0 >> 1 (18)
также для всех частот спектра входного сигнала, в том числе и для самой нижней. Аналогично для интегрирования импульсов длительностью tu условие интегрирования запишется в виде
t0 << tu (19)
Из неравенств (16), (18) следует, что при заданной цепи дифференцирование осуществляется тем точнее, чем ниже частоты, на которых концентрируется энергия входного сигнала, а интегрирование – чем выше эти частоты. Чем точнее дифференцирование или интегрирование, тем меньше величина выходного сигнала.
Прохождение прямоугольных импульсов через RC -цепи
В качестве примера, иллюстрирующего дифференцирование и интегрирование сигналов, рассмотрим отклик RC-цепей, показанных на рис.2 и 3, на прямоугольный импульс. Возьмём цепь, на выходе которой стоит сопротивление (рис.2), найдём осциллограмму выходного напряжения, т.е. вид UR (t). Пусть в момент времени t = 0 на входе возникает скачок напряжения U0 (рис.4).
В этом случае для 0 < t < tu можно записать уравнение цепи в виде:
U0 = 1/Còi(t)dt + UR (t). (17)
После дифференцирования получим
dUR /dt + UR /t0 = 0. (18)
Поскольку ёмкость С не может зарядиться мгновенно, то для t = 0, UR = U0 всё входное напряжение оказывается приложенным к сопротивлению. С учётом этого начального условия решение уравнения (18) запишется в виде:
. (19)
Экспоненциальный спад выходного напряжения описывает процесс зарядки ёмкости через сопротивление R и соответствующее перераспределение напряжения между R и C. При этом постоянная времени t0 характеризует скорость зарядки ёмкости и может быть интерпретирована как время, за которое напряжение UR уменьшится в е раз.
Для t0 << tu экспоненциальная зависимость становится резче, в результате на выходе наблюдаем короткие импульсы в момент начала и окончания входного воздействия, являющиеся удовлетворительной аппроксимацией производной от входного сигнала (рис.4).
Если выходное напряжение снимается с конденсатора, то для 0 < t < tu получим: