Лабораторная работа: Исследование явления дифракции света на компакт-диске
Цель работы: Углубить представления о явлении дифракции волн (обоснования, виды проявления, условия наблюдения, модели и основы теоретических расчетов). Провести экспериментальные наблюдения и измерения на примере дифракции световых волн.
Оборудование . Транспортир, лазер-брелок, осветитель с лампой накаливания, фрагмент компакт-диска, экран (лист из белого картона).
1. Компакт диск - дифракционная решетка
1.1. Теоретическая часть.
Зеркальная поверхность компакт-диска представляет собой спиральную дорожку, шаг которой соизмерим с длиной волны видимого света. На такой упорядоченной и мелкоструктурной поверхности в отраженном свете заметно проявляются дифракционные и интерференционные явления, что и является причиной радужной окраски создаваемых им бликов.
Луч лазера занимает на компакт-диске настолько малую площадь, что этот участок можно считать одномерной дифракционной решеткой (рис.1). Она характеризуется постоянным шагом d , и условие максимумов в отраженном на ней свете определяется по известной формуле d sinφk =kl, где k – номер (порядок) максимума, l длина волны падающего света. Формула справедлива при нормальном падении луча на диск. В данном случае наблюдаются по два дифракционных максимума с каждой стороны от падающего луча.
Рисунок 1.
1.2. Экспериментальная часть
1.2.1. Экспериментальная установка.
Стенд для проведения экспериментальных наблюдений (рисунок 3) состоит из транспортира 1, на котором жестко закреплены лазер-брелок 2 и фрагмент компакт диска 3. Зеркальные дорожки компакт-диска, имеющие форму дуг, на стенде ориентированы близко к вертикальному направлению. Фрагмент закреплен у нулевой точки транспортира. Брелок ориентирован так, что лазерный луч падает перпендикулярно плоскости фрагмента.
Дифрагированные лучи попадают на боковые стороны транспортира, их углы отклонения определяются по показаниям транспортира. Подготовка прибора включает проверку юстировки лазера. Она считается нормальной, если отраженный луч возвращается в его выходное окно. Проверить это можно по положению пятна на полоске белой бумаги, размещенной вблизи окошка.
Рисунок 3.
Поскольку зеркальные дорожки имеют дугообразную форму, то дифрагированные лучи не лежат строго в плоскости транспортира и поэтому для их наблюдения также следует пользоваться белым экраном, помещая его вблизи шкалы и ориентируя перпендикулярно плоскости транспортира. Нажав на кнопку включателя лазера проверьте точность установки его корпуса и пронаблюдайте интерференционные максимумы слева и справа от оси прибора.
1.2.2. Методика и результаты измерений.
Включив лазер, измерьте углы дифракции для максимумов первого и второго порядка. Проделайте это сначала по левой (α1 и α2 ), а затем - по правой (α3 и α4 ) частям шкалы транспортира. Результаты занесите в таблицу. Вычислите средние значения углов φ1 =(α1 +α3 )/2 и φ2 =(α4 +α2 )/2 .
Длина волны света, излучаемого лазером (приведена на его корпусе), занимает диапазон 620-680 нм. Для расчетов можно воспользоваться средним значением длины волны λ=650 нм=0.65 мкм.
Задание 1 . По полученным значениям углов дифракции определите период d дифракционной структуры зеркальной поверхности компакт-диска.
Оцените погрешность метода и запишите полученный результат с указанием интервала.
Таблица 1. Результаты наблюдений дифракции света на компакт-диске ………….
Угол отклонения α, град | Среднее значение φ, град | Период дифракционной структуры, d , мкм | Среднее значение периода мкм | Относительная погрешность измерения % | Абсолютная погрешность измерения мкм |
1 |
α1 | ||||
2 |
α3 | ||||
3 |
α2 | ||||
4 |
α4 |
Результаты измерений:
1. Период дифракционной структуры компакт-диска d = ………± ……..;
2. Вдоль радиуса диска на каждом миллиметре размещается n = ………± …… зеркальных дорожек.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--